وبلاگ

توضیح وبلاگ من

پایان نامه ارشد: بررسی ساخت نانو کامپوزیت سیلیس و کاربید سیلیسیم و اکسید سریم با پیوند دهنده مناسب برای صیقل کاری شیشه ها

   میلیون‌‌ها سال است که در طبیعت ساختارهای بسیار پیچیده با ظرافت نانومتری ساخته می‌شوند. علم بشری اینک در آستانه چنگ اندازی به این عرصه است، تا ساختارهایی بی نظیر بسازد که در طبیعت نیز گزارش نشده است. فناوری نانو کاربردهایی را به عرصه ظهور می‌رساند که بشر از انجام آن به کلی عاجز بوده است و پیامدهایی را در جامعه بر جا می‌گذارد که بشر تصور آنها را هم نکرده است[1].

 

   فناوری نانو واژه ای است کلی که به تمام فناوری‌‌های پیشرفته در عرصه کار با مقیاس نانو اطلاق می‌شود[2]. نانو فناوری، ساخت مواد، قطعات و سامانه‌‌های مفید در مقیاس طولی نانومتر و بهره برداری از خصوصیات و پدیده‌‌های جدید حاصل از آن مقیاس است. به عبارت دیگر نانوفناوری یک فناوری نوظهور شامل کلیه فعالیت‌‌ها با توانایی کنترل درتک اتم‌‌ها و مولکولها برای ساخت مواد و وسایل جدید با خواص مطلوب است[3]. معمولاً منظور از مقیاس نانو ابعادی در حدود یک تا 100 نانومتر می‌باشد[1]. نانومتر واحد طولی برابر یک میلیاردم متر است. این اندازه تقریباً چهار برابر قطر یک اتم منفرد است. یک مکعب با طول وجه 5/2 نانومتردرحدود 1000 اتم را در خود جای می‌دهد[3]. مفهوم فناوری نانو به دارنده جایزه نوبل،ریچارد فینمن نسبت داده شده است، در یک سخنرانی که وی در سال 1959 ارائه نمود[4]. در این رپچارد فینمن طی یک سخنرانی با عنوان (فضای زیادی در سطوح پائین وجود دارد) ایده فناوری نانو را مطرح ساخت[2]. ودر سال 1960 منتشر شد[4]. او اینطور بیان نمود که : (( اصول فیزیک،تا آنجایی که من می‌توانم ببینم، امکان جابجایی ماهرانه اتم به اتم اشیاء را فراهم می‌سازد و من آن را رد نمی‌کنم.)).

 

واژه فناوری نانو اولین بار توسط نوریوتاینگوچی استاد دانشگاه علوم توکیو در سال 1974 بر زبانها جاری شد. او این واژه را برای توصیف ساخت مواد (وسایل) دقیقی که تلورانس ابعادی آنها در حد نانومتر می‌باشد، بکار برد[2و5]. بینیگ و رهرر نظریات درکسلر را به طریقه عملی توسعه دادند. در سال 1981 آنها اولین افرادی بودند که توانستند اتمها را ببینند و از اینجا بود که نانوتکنولوژی ممکن شد. دانشمندان خیلی زود توانستند اتمها را به طور منظم بر روی یکدیگر سوار کنند تا ساختارهای در مقیاس نانو را بسازند[6]. در سال 1986 واژه فناوری نانو توسط کی اریک دکسلر، در کتابی تحت عنوان (موتور آفرینش آغاز دوران فناوری نانو) باز آفرینی و تعریف مجدد شد.

 

وی این واژه را به شکل عمیق تری در رساله دکترای خود مورد بررسی قرارداده و بعدها آنرا در کتابی تحت عنوان (نانوسیستم‌‌ها، ماشین‌‌های مولکولی، چگونگی ساخت و محاسبات آنها) توسعه داد[2].

 

   کلیه مواد رایج همچون فلزات، نیمه‌‌هادی‌‌های، شیشه، سرامیک، پلیمرها توانایی تبدیل به ابعاد نانو را دارا می‌باشند. طیف نانو مواد می‌تواند شامل آلی و معدنی، ذرات کریستالی یا آمورف، پودر یا ذرات دیسپرس شده در یک ماتریس، به صورت ذرات منفرد و جدا از هم یا به صورت آگریگیت، کلوئیدی، سوسپانسیون و محلولهای امولسیونی و‌… باشد. به طور کلی روش‌‌های مختلفی جهت طبقه بندی نانو مواد استفاده می‌شود (جدول 1-2).

 

تفاوت اصلی فناوری نانو با فناوری‌‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. البته تنها

دانلود مقاله و پایان نامه

 کوچک بودن اندازه مد نظر نیست بلکه زمانی که اندازه مواد در این مقیاس قرار می‌گیرد، خصوصیات ذاتی آنها از جمله رنگ، استحکام، مقاومت خوردگی و… تغییر می‌یابد. درحقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌‌های دیگر به صورت قابل ارزیابی بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. عناصر پایه در حقیقت همان عناصر نانو مقیاسی هستند که خواص آنها در حالت نانو مقیاس با خواص شان در مقیاس بزرگ تر فرق می‌کند [2].

 

مفاهیم جدید نانو فناوری چنان وسیع هستند که احتمالاً علم و فناوری را با روش هایی غیر قابل پیش بینی تغییر می‌دهند. اکنون تنها شمایی مبهم از فرصت‌‌ها و منافعی که نانوساختار سازی برای بشر فراهم کرده است مشاهده می‌شود. محصولات فناوری نانو موجود عبارتند از :

 

تایر‌‌های با پوشش مقاوم تولید شده از ذرات در مقیاس نانومتر خاک رس معدنی با پلیمرها، داروهای نانو ذره با ویژگیهای رهایش بسیار کنترل شده، چاپ با کیفیت بسیار عالی با بهره گرفتن از ذرات در مقیاس نانومتر با بهترین خصوصیات رنگ‌‌ها و رنگدانه‌‌ها و تولید لیزر و هدهای دیسک مغناطیسی بسیار پیشرفته با کنترل دقیق ضخامت   لایه‌‌ها.

 

بسیاری از کاربرد‌‌های دیگر که هم اکنون در حال توسعه اند و یا توانمندی بسیار بالایی برای پیشرفت در آینده نزدیک دارند عبارتند از:

 

صنایع هوا نوردی و اتوماسیون: مواد تقویت شده با نانو ذره‌‌ها برای بدنه‌‌های سبک تر، تایر‌‌های تقویت شده با نانو ذره‌‌ها که فرسایش کمتری دارند و قابل بازیافت هستند، رنگ خارجی بدون نیاز به شستشو، پلاستیک‌‌های غیرقابل اشتعال و ارزان، سامانه‌‌های الترونیک برای کنترل و پوشش خود تعمیر.

 

الکترونیک و ارتباطات: سامانه ضبط چند رسانه ای با بهره گرفتن از نانولایه‌‌ها، صفحات نمایش مسطح، فناوری سامانه‌‌های بی سیم، قطعات و فرایندهای جدید در فناوری‌‌های اطلاعات و ارتباطات، هزاران برابر افزایش در ظرفیت و سرعت پردازش داده‌‌ها با قیمت پایین تر و بازده بیشتر در مقایسه با مدارات الکترونیکی کنونی.

 

 مواد: کاتالیزورهای افزایش دهنده بازده انرژی واکنش‌‌های شیمیایی و بازده عمل احتراق (و بنابراین آلودگی کمتر) در وسایل نقلیه موتوری، دریل‌‌ها و ابزارهای برش بسیار سخت و غیره شکننده، سیال‌‌های مغناطیسی هوشمند برای آب بندی و روان کننده‌‌ها.

 

درمان، بهداشت و علوم زیستی: داروهای نانوساختاری جدید، سامانه‌‌های ژنتیکی و داروسازی به زمان تعیین شده در بدن (رهایش کنترل شده)، ایجاد سازگاری بین اعضای مصنوعی و اعضای مصنوعی و اعضاء و مایعات بدن، خود تشخیصی برای استفاده در خانه و مادی برای بازسازی بافت‌‌ها و استخوان‌‌های بدن.

 

   ساخت و تولید: مهندسی ابزار سازی مبتنی بر نسل‌‌های جدیدی از میکروسکوپ‌‌ها و روش‌‌های اندازه گیری و فرایندها و ابزار جدید برای کنترل مواد در اندازه‌‌های اتمی.

 

فناوری مرتبط با انرژی: انواع جدیدی از باتری‌‌ها، فتوسنتز مصنوعی برای تولید انرژی پاک، سلول خورشیدی، ذخیره ایمن هیدروژن به عنوان سوخت پاکیزه و صرفه جویی در انرژی با بهره گرفتن از مواد سبک و مدارات کوچکتر.

 

کاوش در فضا: وسایل فضایی کم وزن، تولید و مدیریت اقتصادی تر انرژی و سامانه‌‌های روباتیک توانا و بسیار ریز.

 

محیط زیست: غشای جدا کننده برای فیلتر کردن آلودگی‌‌ها و یا حتی نمک از آب، جدا کننده‌‌های نانوساختاری برای خارج کردن آلودگی‌‌ها از پساب‌‌های صنعتی، مشخص کردن اثرات نانوساختارها در محیط زیست و تعدیل آسیب‌‌های صنعتی به محیط زیست با کاهش زیاد مصرف انرژی و مواد، کاهش منابع آلودگی و فرصت‌‌های بیشتر برای بازیافت.

 

امنیت ملی: آشکار سازها، سم زداهای عوامل زیستی و شیمیایی، مدارات الکترونیکی بسیار کارآمد، پوشش‌‌ها و مواد نانوساختاری سخت، پارچه‌‌های سبک خود تعمیر، مواد جایگزین خون و سامانه‌‌های امنیتی ظریف[3].

پایان نامه ارشد: تاثیر عملیات سرد کردن زیر صفر بر ساختار میکروسکوپی و رفتار تریبولوژیکی فولاد 7147/1

در بسیاری از کاربرد‌‌‌‌های صنعتی نیاز به قطعاتی است که دارای سطحی سخت بوده و درعین‌حال از چقرمگی یا مقاومت به ضربه‌ی خوبی نیز برخوردار باشند. ازجمله مواردی که می‌‌توان در این رابطه به‌عنوان مثال به آن‌ ها اشاره کرد عبارت‫اند از:میل‌لنگ، میل بادامک، چرخ‌دنده و قطعات مشابه. این قطعات باید سطحی بسیار سخت و مقاوم در برابر سایش داشته و همچنین بسیار چقرمه و مقاوم در برابر ضربه‌‌‌‌های وارده در حین کار باشند.

 

بسیاری از قطعات فولادی را می‌‌توان به نحوی عملیات حرارتی کرد که در پایان دارای مجموعه‌ای از خواص بالا باشند،‌یعنی درحالی‌که از مقاومت به سایش خوبی برخوردارند، دارای استحکام دینامیکی خوبی نیز باشند. این نوع عملیات حرارتی که اصطلاحا به سخت کردن سطحی موسوم‌اند، آخرین عملیاتی هستند که باید در مرحله­ پایانی ساخت قطعه و پس‌ازانجام تمام مراحل مربوط به شکل‌دهی نظیر ماشین‌کاری انجام شود.

 

روش‌‌‌‌های مختلف عملیات حرارتی که به کمک آن‌ ها می‌توان سطح قطعات را سخت کرد، عمدتاً به دو دسته تقسیم می‌شوند. دسته‌ی اول عملیاتی که منجر به تغییر در ترکیب شیمیایی سطح فولاد می‌‌شوند و به عملیات حرارتی­شیمیایی یا ترمو­شیمی موسوم‌اند، نظیر کربن‌دهی، نیتروژن­دهی و کربن نیتروژن­دهی. دسته‌ی دوم روش‌‌‌‌هایی که بدون تغییر ترکیب شیمیایی سطح و فقط به کمک عملیات حرارتی که در لایه‌ی سطحی متمرکز شده، انجام می­شوند و باعث سخت شدن سطح می‌گردند و به عملیات حرارتی موضعی موسوم‌اند، مانند سخت کردن شعله‌ای و سخت­کردن القایی. در آلیاژ‌‌‌‌های آهن–کربن و فولاد‌ها، مارتنزیت از سردکردن سریع آستنیت به وجود می‌آید. واژه­ی مارتنزیت که برای مدت‌‌‌‌ها فقط به ساختار سخت حاصل از سریع سرد کردن فولاد‌‌‌‌های کربنی اطلاق می­ شود برای قدردانی از دانشمند معروف آلمانی به نام مارتنز است. در به­کار بردن واژه‌ی مارتنزیت، اخیراً به‌جای محصولات حاصل، تأکید بیش‌تر بر روی طبیعت دگرگونی گذاشته‌شده است. مارتنزیت فازی است که توسط یک دگرگونی مارتنزیتی ‌یا جابجایی گروهی اتم‌‌‌‌ها حاصل می‌‌شود، گرچه ممکن است فاز یادشده‌، ترکیب شیمیایی، ساختار بلوری و خواص کاملاً متفاوتی از مارتنزیت در فولاد‌‌‌‌ها داشته باشد. دمایی را که در‌یک آلیاژ دگرگونی آستنیت به مارتنزیت شروع می‌‌شود، دمای شروع تشکیل مارتنزیت نامیده و آن را با Ms نشان می‌‌دهند. در حقیقت، Ms نشان دهنده‌ی مقدار نیروی محرکه‌ی ترمودینامیکی لازم برای شروع دگرگونی برشی آستنیت به مارتنزیت است. با افزایش درصد کربن، دمای Ms به‌طور قابل توجهی کاهش می‌یابد. در حقیقت کربن موجود به‌صورت محلول جامد، استحکام یا مقاومت برشی آستنیت را افزایش می­دهد و بنابراین با افزایش کربن نیرومحرکه‌ی بیش‌تری جهت شروع لغزش برای تشکیل مارتنزیت لازم است. این نیروی محرکه‌ی بیش‌تر، با سرد کردن فولاد تا دمایی پایین‌تر و یا به‌عبارت‌دیگر تحت تبرید بیش‌تر(Ms کمتر) به دست می‌‌آید. دمای پایان تشکیل مارتنزیت (Mf)‌یا دمایی که دگرگونی آستنیت به مارتنزیت در‌یک آلیاژ داده‌شده خاتمه می‌یابد نیز تابعی از درصد کربن آلیاژ است.

 

آستنیت باقیمانده فازی نرم بوده و در دمای پایین ناپایدار است؛ به‌گونه‌ای که در دمای پایین و در حین کار به مارتنزیت ترد تبدیل می‌‌شود. تبدیل آستنیت به مارتنزیت تقریباً 4% انبساط حجمی ایجاد می‌‌کند که منجر به اعوجاج قطعات می‌‌شود. بنابراین از عملیات زیر صفر یا بازگشت چندتایی در دمایی نسبتاً بالا و یا مدت‌زمان طولانی برای کمینه کردن میزان آستنیت باقیمانده در فولاد‌‌‌‌ها استفاده می‌‌شود.

 

دو نوع عملیات زیر صفر وجود دارد: 1) زیر صفر سطحی که در محدوده دمایی 100- تا C°60- انجام می­ شود. این عملیات منجر به کاهش آستنیت باقیمانده و افزایش مقاومت سایشی می‌‌شود. 2) زیر صفر عمیق که در دما‌‌‌‌های زیر C°125- انجام می­ شود.

 

اثرات زیر صفر‌ عمیق عبارت‌اند از:

 

1- تبدیل آستنیت باقیمانده به مارتنزیت

 

2- کاهش تنش­های پسماند

 

3- تشکیل کاربیدهای بسیار ریز که در بین کاربیدهای درشت قرار می‌‌گیرند

 

دانلود مقاله و پایان نامه

 

 

4- تشکیل ابرهای نابجایی در فصل مشترک زمینه‌ی مارتنزیتی و کاربید‌‌‌‌ها در طول فرایند هم‌دما سازی و تشکیل کاربید

 

5- توزیع یکنواخت کاربید­ها ،کوچک شدن اندازه­ کاربید­های ثانویه، افزایش میزان و چگالی آن‌ ها

 

6- افزایش مقاومت سایش خراشان و سایش خستگی

 

7- افزایش استحکام کششی و پایداری

 

8- افزایش سختی

 

9- پایداری ابعادی ماده 

 

10- تولید ساختار مولکولی چگال تر

 

11- افزایش هدایت الکتریکی فلزات

 

12- افزایش مقاومت به خوردگی

 

پارامتر‌‌‌‌های زیر صفر عبارت‌اند از: نرخ سرمایش، دمای هم‌دما سازی، زمان هم‌دما سازی، نرخ گرمایش، دما و زمان بازگشت و دمای آستنیته کردن.

 

تحقیقات بسیاری بر روی فولاد‫هایی که درصد عناصر آلیاژی و یا کربن آن‫ها بالاست، صورت گرفته است. در این پژوهش‫ها با حصول ترکیب مناسبی از توزیع کاربید‫ها و کاهش یا حذف آستنیت باقیمانده خواص فولاد‫های مورد مطالعه را بهبود داده‫اند.

 

فولاد 7147/1، فولادی کربوره شونده (سمانته) بوده که در ساخت قطعاتی که ترکیبی از استحکام متوسط، چقرمگی و مقاومت سایشی بالا نیاز است، مورداستفاده قرار گرفته است و گاه برای تهیه­ قطعات مورد مصرف صنایع خودرو‫سازی همچون چرخ‌دنده و میل‌لنگ کاربرد دارد. در فولاد­هایی که به منظور سختی کاری سطحی تحت عملیات کربوره­کردن قرار می­گیرند، با افزایش درصد کربن سطح، Ms کاهش و میزان آستنیت باقیمانده در اثر سریع سرد کردن در سطح افزایش خواهد یافت.

 

در این پژوهش عملیات زیر صفر عمیق به منظور بهبود خواص سایشی فولاد 7147/1 در زمان‫های مختلف انجام شده است؛ در فصل دوم تحقیقات صورت گرفته بر فولاد‫های مختلف، فصل سوم مواد و روش تحقیق، فصل چهارم نتایج و بحث و در نهایت در فصل پنجم، نتایج حاصل و پیشنهاداتی در راستای بررسی‫های بیشتر و کارآمد گردآوری شده است.

 

فصل دوم: مروری بر مطالب

 

1-2- معرفی و تاریخچه

 

فولاد آستنیتی آلیاژی از آهن و کربن همراه با عناصر دیگر در حالت محلول است که با عملیات نفوذی در محلول آستنیتی تجزیه و همگن‌سازی می‌‌شود. زمانی که فولاد حرارت داده می‌‌شود ساختار کریستالی آهن به مکعبی مرکز‫دار تغییر می‌یابد. استحاله‌ی آستنیت به مارتنزیت از دمایی که دمای آغاز مارتنزیت ‌یا Ms نامیده می‌‌شود، آغاز می‫شود. برای اغلب فولاد‌‌‌‌های خاص، استحاله هم‌دما بوده و همان‌طور که دما به دمای پایان مارتنزیت می‌‌رسد (Mf)، توسعه می‫یابد. مقداری آستنیت، آستنیت باقیمانده، همیشه پس از سخت سازی حضور دارد. مارتنزیت بیش‌تر و درصد کربن بیش‌تر، سختی فولاد را افزایش می‌‌دهد. میزان کربن، دمای آغاز و پایان استحاله‌ی مارتنزیت را تحت تأثیر قرار می‌‌دهد. Ms و Mf می‌‌تواند پایین‌تر از دمای اتاق باشد؛ فولاد به‌صورت جزئی به مارتنزیت تبدیل شده و بقیه‌ی ساختار را آستنیت باقیمانده تشکیل می‌‌دهد. این دو دما همچنین با افزایش اندازه دانه کاهش می‌یابد [1].

 

2-2- آستنیت باقیمانده

 

دمای شروع استحاله مارتنزیت (Ms) و دمای پایان این استحاله (Mf) در فولادها به درصد کربن و درصد عناصر آلیاژی بستگی دارد (شکل2-1). همان‌طور که از شکل 2-1 مشخص است، وقتی فولادی با درصد کربن بالای 65/0 %کوئنچ می‌شود، تغییر حالت آستنیت به مارتنزیت در دمای اتاق (oC20) پایان نمی‌یابد. درنتیجه مقداری از آستنیت باقی خواهد ماند که به آستنیت باقیمانده موسوم است [2]. در جدول 2-1 تأثیر 1% از عناصر آلیاژی بر دمای شروع استحاله مارتنزیتدر فولادهایی با 9/0-1% کربن آورده شده است. البته تأثیر عناصر آلیاژی بر دمای استحاله مارتنزیتی به درصد کربن در فولاد نیز بستگی دارد. در جدول 2-2 تأثیر 1% کروم بر دمای شروع استحاله مارتنزیتی در فولادهایی با درصدهای مختلف از کربن آورده شده است [3]. در شکل 2-2 منحنی استحاله مارتنزیت آورده شده است. همان‌طوری که مشخص است استحاله مارتنزیت درA˝r(M) ، که همان دمای  Msاست شروع می‌شود. اگر دما کاهش پیدا کند، استحاله پیشرفت کرده و مقدار مارتنزیت افزایش می‌یابد. اگر عملیات کوئنچ تا دمای محیط انجام شود، استحاله مارتنزیتی در دمای  oC 20 متوقف می‌گردد. سرد کردن فولاد تا دمای t˝ که همان دمای Mf است منجر به افزایش درصد مارتنزیت می‌شود ولی مقداری آستنیت باقیمانده در ساختار حضور دارد [2]. آستنیت باقیمانده که یک فاز نرم است باعث کاهش سختی فولاد پس از کوئنچ خواهد شد. اگر درصد آستنیت باقیمانده بالاتر از 10% باشد باعث کاهش فاحش سختی در نمونه می‌شود (شکل 2-3). هر چه درصد کربن بالاتر باشد، درصد آستنیت باقیمانده نیز بیش‌تر خواهد بود (شکل 2-4). اگر یک فولاد‌‌‌ هایپریوتکتویید از منطقه کاملاً آستنیتی در بالای Acm سرد شود، ساختار پس از سرد کردن از مارتنزیت و آستنیتت باقیمانده تشکیل خواهد شد و همان‌طور که در شکل 2-3 مشخص است سختی با افزایش درصد کربن، به دلیل افزایش در مقدار آستنیت باقیمانده، کاهش خواهد یافت؛ اما اگر فولادهای‌‌‌ هایپریوتکتوید از منطقه دوفازی آستنیت – سمانتیت، کوئنچ شوند، ساختار نهایی فولاد از مارتنزیت – سمانتیت – آستنیتت باقیمانده تشکیل می‌شود. تحت این شرایط سختی این فولادها یکسان بوده و وابسته به درصد کربن نیست [2].

دانلود پایان نامه ارشد: بررسی قابلیت های مجتمع زیستی

:

 

فصل اول به کلیات پژوهش اختصاص دارد، در واقع در این فصل چهارچوب اصلی کار شکل گرفته و در فصل های بعدی بسط می یابد. در ابتدا به طرح و الزام توجه به موضوع پژوهش پرداخته می شود. سپس پرسش اصلی که مبین خط مشی اصلی پژوهش است با عنوان چگونگی ارتقاء سطح کیفی زندگی ساکنان مجتمع زیستی با توجه به عوامل اجتماعی و محیطی مطرح می شود، سپس سوالهای فرعی از بطن سوال اصلی به تفکیک حوزه ها استخراج شده و در حوزه خود بسط می یابد، هدف کلی تحقیق در راستای پرسش اصلی تحت عنوان:

 

ارتقاء كیفیت زندگی اجتماعی و کاهش مصرف انرژی در مجموعه های زیستی

 

دو هدف فرعی با عنوان:

 

– افزایش تعاملات اجتماعی ساكنان در مجموعه های زیستی

 

– کاهش مصرف انرژی در مجتمع های زیستی با بهره گرفتن از تکنیک های مناسب طراحی

 

تبیین گردیده، سپس پیش فرض ها با توجه به کلیات پژوهش در راستای سوال اصلی شکل گرفته، در ادامه روش پژوهش به صورت کتابخانه ای و میدانی تفکیک شده و محدوده و مشکلات آن مطرح می شود. به این طریق می توان به گرد آوری مطالب و دسته بندی موضوعی فیش ها جهت گردآوری مطالب و نهایتاً استخراج الزامات و برنامه فیزیکی جهت طراحی مجتمع زیستی پرداخت.

 

در این فصل با ذکر مقدمات کلی پژوهش خط مشی اصلی تحقیق مشخص گردیده و براین مبنا می توان به دسته بندی موضوعی فیش ها جهت جمع آوری سایر فصل ها پرداخت. این پژوهش شامل 6 فصل است. فصل اول به توصیف مقدمات، فصل دوم  مبانی نظری پژوهش با سه بخش معرفی مجتمع زیستی، عوامل اجتماعی و عوامل محیطی در مجتمع زیستی بسط یافته و به موضوعات اصلی پژوهش در راستای سوال اصلی تحقیق تحت عنوان،لزوم شكل گیری فضای جمعی،اهمیت زندگی اجتماعی،ﭘیامد های حاصل از نابودی زندگی اجتماعی ،اهمیت احساس تعلق در مجتمع زیستی،عوامل انسانی شامل نیازهای فردی و اجتماعی،عوامل محیطی مؤثر بر صرفه جویی انرژی و ارتقاء کیفی زندگی ساکنان با در نظر گرفتن عوامل ماثر در طراحی دسترسی ها ، موقعیت بلوک ها،تداوم كالبدی،الزامات طراحی مجتمع زیستی بر اساس نیاز های ساكنان و قابلیت های موجود می پردازد.

 

سپس در فصل سوم نمونه های موردی داخلی و خارجی، مورد بحث قرار گرفته، فصل چهارم به شناخت موضوعی طراحی مجتمع زیستی،

دانلود مقاله و پایان نامه

 فصل پنجم به تحلیل و ارزیابی اطلاعات جهت طراحی و فصل ششم به طراحی مجتمع زیستی و الزامات آن می پردازد.

 

1-1- طرح موضوع

 

مسکن به صورت اجتماعی یا social housing نوع خاصی از مسکن است که ریشه ای تاریخی در قرن نوزدهم دارد و در تعدادی از کشور های صنعتی طی دهه های گذشته و به ویژه در سالهای  بعد از جنگ جهانی دوم یکی از روش های عمده تامین مسکن برای افراد کم درآمد و میان درآمد بوده است.

 

در راستای تحولات انقلاب صنعتی و رشد جمعیت رویكرد های جدیدی در برنامه ریزی و طراحی مسكن به وجود آمده است. زندگی در شهر های بزرگ استفاده از مجموعه های متراكم تر و هماهنگ با جنبه های انسانی و محیطی را القاء می كند. زیرا توجه به این عوامل می تواند زندگی در مجموعه های مسكونی را ارتقاء بخشد. هرچند طرح یک مجتمع زیستی حاص نهایی فرایند پیچیده ای است که عناصر آن بر هم تأثیر متقابل دارند و عوامل متعددی از جمله ویژگی های فرهنگی،اجتماعی، اقتصادی و محیطی در آن مؤثرند، اما با رعایت اصول و معیارهای حاصل از پژوهش های بنیادی و کاربردی در زمینه طراحی معماری،سازه و طراحی سایت می توان امکان استفاده و البته مشروط از مجتمع های مسکونی را راه حلی واقع گرایانه و مطلوب جهت اسکان مردم و تامین سایر نیازهای مرتبط با فعالیت

 

های اجتماعی و محیطی در شهر های بزرگ دانست.

 

با بوجود آمدن این ﭘیچیدگی ها، تشخیص نیازهای روزمره استفاده كنندگان از مسكن و تأمین آن به سهولت گذشته نمی باشد. در این خصوص تنها اتكا به تحقیق سامان یافته و دست یافتن به نیازهای قابل تعمیم جمعیت های مورد نظر می تواند مبنایی برای برنامه ریزی و فراهم آوردن مقدمات طراحی مجموعه ها باشد. در طراحی مجموعه هایی كه ساكنان آینده آنها مشخص نیستند معمولاً مطالعه جمعیت های با ویژگی های فرهنگی و با شیوه زندگی مشابه تعیین كننده نیازهای ساكنین آینده است. سازگاری و هماهنگی میان عوامل انسانی و الگوهای كالبدی و محیطی می تواند منجر به طراحی محیط های مسكونی شود كه وقوع رفتارهای در خور آداب زندگی جمعی و سنت سكونت ساكنین را تشویق نماید. بدین ترتیب پیش بینی ارتباطات مناسب دسترسی های سهل الوصول از الزامات حائز اهمیت طراحی خواهد بود.

 

از سال 1300به بعد، با تثبیت دولت و قدرت گرفتن حکومت مرکزی، روند صنعتی شدن کشور ایران به مرحله ای جدید رسید و در این راستا روند تجدد گرایی نیز اثر خود را بر ابعاد مختلف جامعه بر جای گذاشت. اولین نتایج فیزیکی این روند در محیط های شهری از سالهای 1316-1309 قابل تامل است. در این دوره اولین اقدامات بلند مرتبه سازی در مورد ساخت وزارتخانه ها و سازمان های مختلف، در تهران صورت گرفت. جنگ جهانی دوم روند نوسازی شهر تهران را دچار وقفه ساخت، اما پس از کودتای 28 مرداد سال 1332 و با اتکا به در آمدهای روز افزون نفت، شهر نشینی رو به رونق گذاشت و برای اسکان مهاجران تدابیری اندیشیده شد.

 

اگرچه مجتمع سازی از سویی می تواند به بخشی از مسائل شهری نظیر کمبود زمین و مسکن تا حدی پاسخ دهد، اما این پدیده خود می تواند نگرانیهای عمده ای را نیز دامن بزند. برای مثال، فقدان ضوابط و معیارهایی برای توسعه این پدیده، خود می تواند نگرانیهای عمده ای را نیز دامن بزند. برای مثال، فقدان ضوابط و معیارهایی برای توسعه این پدیده، می تواند عوارض نامطلوبی نظیر ناهمگونی در سیمای کالبدی شهری همراه با نا سازگاریهای اجتماعی و فرهنگی را باعث گردد. 

 

مساحت سایت مورد نظر جهت طراحی حدود 8 هکتار در محدوده منطقه 5 شهرداری تهران (شرق میدان نور)واقع شده است. موقعیت و ابعاد زمین پروژه این امکان را فراهم می آورد که در مقیاس شهری و به عنوان یک شاخص تاثیر گذار عمل کند.

 

از آنجا که در طرح تفضیلی کاربری این قطعه زمین فضای سبز تعریف شده و با توجه به فقدان فضاهای سبز عمومی بزرگ مقیاس در سطح این منطقه و شهر تهران به عنوان یکی از مراکز تنفس شهری تعریف شده، به همین دلیل در نظر است قسمت اعظم این سایت به فضای سبز اختصاص یابد.

 

در کنار این عملکرد، عملکردهای مسکونی ، تجاری و فرهنگی در این مجموعه پیش بینی شده تا با ترکیب فعالیت های گوناگونی چون سکونت،خرید،کار و تفریح در ساختاری چند عملکردی و در ارتباط با فضای سبز مجتمعی زنده و پر انرژی در مقیاس شهری به وجود آید.

 

ساختمانهای مسکونی می توانند در شرایط مناسب به صورت مطلوبی جوابگوی نیازها و ضرورت های محیط باشند، ساختمانهای مسکونی علاوه بر استفاده برای هریک از کاربری های مسکونی، تجاری و اداری می توانند به صورت مناسبی برای عملکردهای تلفیقی نیز مورد استفاده قرار گیرند و از انها برای مرکزیت بخشیدن به فعالیت های مرتبط با یکدیگر استفاده کرد.

 

[1]  مفهوم محیط های حمایت كننده را راﭘاﭘورت مورد بحث قرار داده و منظور از آن محیط هایی است كه استفاده مردم از عملكردهایی خاص را تشویق یا تسهیل كند.Rapoport,1982 و Rapoport,1986

 

[2] گرچه این مجموعه ها مشكلات خاص خود را دارند اما از نظر زیر ساخت های شهری نسبت به شهرك های جدید مزیت های زیادی دارند.

پایان نامه ارشد: سنتز و ساخت قطعات از نانو ذرات زیرکونیا و محلول های جامد آن جهت استفاده در پیل های سوختی اکسید جامد

انرژی از دیر باز به عنوان موتور محرک جوامع بشری شناخته شده است و با پیشرفت بشر بر اهمیت و تأثیر گذاری آن در زندگی بشر افزوده شده است. بر این اساس هیدروژن به عنوان یکی از سوختهای پاک یکی از بهترین گزینه ها جهت ایفای نقش حامل انرژی در این سیستم جدید ارائه انرژی می  باشد ]1[. بشردرآینده ای نه چندان دورعصر هیدروژن راتجربه خواهدکرد]1و2[. عمل تبدیل انرژی شیمیایی موجود در هیدروژن به انرژی الکتریکی توسط دستگاهی به نام پیل سوختی انجام می پذیرد]3[. پیل های سوختی در کاهش آلودگی محیط زیست نقش به سزایی را ایفا می کنند و به خاطر عدم به کارگیری قطعات  مکانیکی زیاد ایجاد آلودگی صوتی نیز نمی نمایند]3[. پیل های سوختی به عنوان یک منبع بسیار ایده آل انرژی برای استفاده های ساکن وغیر ساکن ، نظیر حمل ونقل و نیرو گاه ها می باشند .در این بین پیل های سوختی اکسید جامد (SOFCs) بدلیل مزایایی نظیر قیمت ارزانترمواد مورد استفاده درآنها، حساسیت کمتر به ناخالصی های گاز هیدروژن وکارایی بسیار بالاتر یکی از جذاب ترین انواع پیل های سوختی می باشد. این پیل های سوختی به دلیل اینکه هیدروژن ورودی به آنها نیاز به هیچ گونه تغییر و خالص سازی اولیه  ندارد، به شدت از نظر قیمت نسبت به سایر پیل های سوختی ارزان تر می باشند]4[. پیل های سوختی اکسید جامد از سه بخش آند و کاتد و الکترولیت تشکیل شده اند. اساس عملکرد یک پیل سوختی اکسید جامد شامل احیای یک اکسنده (O2) درکاتد و اکسایش یک سوخت (H2) در آند می باشد. در این پیل ها نیاز به یک الکترولیت هادی یون اکسیژن و پروتون، برای واکنشهای الکتروشیمیایی اکسایش و کاهش اکسیژن و هیدروژن، انجام شده درالکترودها می باشد]5[.

 

امروزه در پیل های سوختی اکسید جامد بطور گسترده از هیدروژن به عنوان سوخت استفاده می شود. هیدروژن از منابع مختلف مانند: گازطبیعی، گازهای سنتزی حاصل از تبخیر منابع کربنی و زغال وغیره بدست می آید. هیدروکربنها نیز بطور گسترده به عنوان سوخت این پیل ها رواج پیداکرده اند. سوختهای هیدروکربنی معمولا در دماهای بالای عملکرد پیل سوختی اکسید جامد ناپایدارند و برروی آند به هیدروژن و کربن تبدیل می شوند. سوختهای هیدروکربنی بطور معمول مقدارکمی سولفوربه همراه دارند. کربن حاصل از تجزیه هیدروکربنها و سولفور موجود درآنها مشکلاتی برای عملکردپیل  ایجاد می کنند. برای جلوگیری از نشست کربن در سطح آند معمولا مقداری بخاراضافه به همراه گاز استفاده می شود و همچنین تغیراتی نیز در ترکیبات موادآندداده میشود. برای جلوگیری از سمی شدن پیل توسط سولفور معمولا سوخت را سولفور زدایی می کنند]5[.

 

 در سالهای اخیر تحقیقات گسترده ای بر روی مواد، کاتالیزورها، علوم سطح و خواص الکتروشیمیایی آندها انجام شده است] 4[. آندهای مورد استفاده در پیل های سوختی اکسید جامد از مواد و تنوع وگستردگی فراوانی برخوردارند. و از روش های ساخت و سنتزمختلفی برای سنتزپودر و ساخت این آندها استفاده می شود. دوویژگی برجسته آند این پیل ها برای انتخاب ماده مناسب برای آند برای کارکردمناسب، الف)رسانایی یونی، ب)رسانایی الکترونی می باشد. زیرکونیا به عنوان یک ماده که به طور ذاتی دارای نقص جای خالی در ساختارمی باشد، یکی ازبهترین گزینه ها برای استفاده درآند این پیل ها می باشد.

 

     در این تحقیق از سنتز هم رسوبی برای تهیه محلولهای جامد استفاده شد. این روش بدلیل تولید ترکیباتی همگن و با خلوص بسیار بالا ، از اهمیت بسیار زیادی برخوردار بوده و علاوه بر آن کنترل اندازه دانه نیز در این روش بسیار آسان است]12[. هنگامی که زیرکونیا در دماهای پایین به روش هم رسوبی سنتز می شود امکان پایداری فاز تتراگونال به PH و هیدرولیز کننده مورد استفاد،وابسته می شود. در این تحقیق به روش سنتز همرسوبی، 3 محلول جامد، الف)Al-Zr، ب)Al-Zr-Ni،

پایان نامه

 

ج)Al-Zr-Ni-Cu تهیه و آماده سازی شد. این محلول های جامد به عنوان مواد جدید برای استفاده در آند پیل های اکسید جامد طراحی و آماده شدند. ارزان بودن، غیرسمی بودن، سنتزآسان، تکرارپذیری تولید از جمله مزایای این مواد است. یکی از موارد مهم برای تولید و ساخت آندها در پیل سوختی اکسیدجامد، متخلخل بودن این آندها می باشد. این آندها باید دارای تخلخل با اندازه و توزیع یکنواخت باشند. که به این منظور از موادی مانند کربن و مواد دیگری برای متخلخل سازی استفاده می کنند]13[. دراین تحقیق برای متخلخل سازی آند چند نوع مختلف تخلخل زای، ارزان  قیمت و مناسب در آند استفاده شد. که نهایتا منجر به به استفاده از  PEGبه عنوان تخلخل ساز مناسب شد.پس از سنتز و تهیه محلول های جامد، موادحاصل ابتدا در دمای 500 درجه سانتیگراد عملیات حرارتی شدند و سپس برای تعیین تثبیت فازی و زینترینگ نهایی در دماهای800 و1000 و1200 و14700 درجه سانتی گراد عملیات حرارتی شدند.پس ازآن پودرهای حاصل با دو روش تر و خشک با چند نوع تخلخل زا ترکیب و با روش پرس هیدرولیک یکطرفه شکل دهی شده و عملیات حرارتی نهایی در14700 درجه سانتیگراد بر روی آنها صورت گرفت. قطعات آندی که دارای تخلخل مناسب و توزیع و اندازه تخلخل یکنواخت و استحکام کافی بودند، انتخاب شده و چگالی آنها به روش ارشمیدس اندازه گیری شد.

 

در فصل دوم این پایانامه مفاهیمی در مورد نانو فناوری و نانو محلول جامدها ارائه گردیده است. در ادامه مفاهیم کلی و واکنشهای انجام شده در انواع پیل های سوختی شرح داده شده است.

 

سپس مفاهیم کلی و عمومی در موردآندهای پیل سوختی اکسید جامد، روش های ساخت و مواد بکار برده شده در آنها، مورد بحث و بررسی قرارگرفته است. درفصل سوم ابتدا به مواد مورد استفاده در این پروژه پرداخته شده است. در ادامه روش های انجام آزمایش(مواد و تجهیزات)ارائه داده شده و در بخش آخر دستگاه ها و لوازم مورد استفاده جهت بررسی و خواص نمونه ها تشریح گردید. درفصل چهارم نتایج حاصل از آزمایشات و بحث های مربوطه ارائه گردیده است. فصل پنجم نتیجه گیری  کلی از این تحقیق رابیان می کند.

 

فصل دوم: مروری بر منابع مطالعاتی

 

1-2- فناوری نانو

 

فناوری نانو واژه ای است کلی به تمام فناوری های پیشرفته در عرصه کار با اندازه نانو اطلاق میشود معمولاً منظور از مقیاس نانو ابعادی در حدود1 تا 100نانومتر می باشد. در شکل2-1 اندازه های مختلف از1 متر تا 1 نانو متر نشان داده شده است. ریچارد فاینمن طی یک سخنرانی با عنوان ( فضای زیادی در سطوح پائین وجود دارد) ایده فناوری نانو را مطرح ساخت. وی این نظریه را ارائه داد که در آینده ای نزدیک می توانیم مولکول ها و اتم ها را به صورت مستقیم دستکاری کنیم. واژه فناوری نانو اولین بار توسط نوریوتاینگوچی استاد دانشگاه علوم توكیو در سال 1974 بر زبانها جاری شد. او این واژه را برای توصیف ساخت مواد دقیقی كه تلورانس ابعادی آنها در حد نانومتر می باشد به کاربرد، در سال 1984 این واژه توسط كی اریک دركسلر در کتابی تحت عنوان (موتور افرینش: آغاز دوران فناوری نانو) باز آفرینی و تعریف مجدد شد. وی این واژه را به شكل عمیق تری در رساله دكترای خود مورد بررسی قرار داده و بعدها آن را در کتابی تحت عنوان (نانو سیستم ها، ماشین های مولكولی چگونگی ساخت و محاسبات آنها) توسعه داد. نانو تکنولوژی در ترجمه لفظ به لفظ، به معنی تکنولوژی بسیارکوچک (نانو، به معنی بسیار بسیار کوچک، مقیاس10 به توان منفی 9 ) می باشد[131و167].

 

2-2- خواص نانو ذرات

 

در تكنولوژی نانو اولین اثر کاهش اندازه ذرات، افزایش سطح است. افزایش نسبت سطح به حجم نانو ذرات باعث می شود که اتم های واقع در سطح، اثر بسیار بیشتری نسبت به اتم های درون حجم ذرات، بر خواص فیزیکی ذرات داشته باشند. این ویژگی واکنش پذیری نانو ذرات را به شدت افزایش می دهد. زیرا تعداد مولکولها یا اتمهای موجود در سطح در مقایسه با تعداد اتمها یا مولکولهای موجود در توده نمونه بسیار زیاد است، به گونه ای که این ذرات به شدت تمایل به آگلومره یا کلوخه ای شدن دارند]132[. مساحت سطحی زیاد، عاملی کلیدی در کارکرد کاتالیزوها و ساختارهایی همچون الکترودها می باشد. به عنوان مثال با بهره گرفتن از این خاصیت می توان کارایی کاتالیزورهای شیمیایی را به نحو مؤثری بهبود بخشید و یا در تولید نانو کامپوزیت ها با بهره گرفتن از این ذرات، پیوندهای شیمیایی مستحکم تری بین ماده زمینه و ذرات برقرارکرده تا استحکام آن به شدت افزایش یابد]133[. افزایش سطح ذرات، فشار سطحی را کاهش داده و منجر به تغییر فاصله بین ذرات یا فاصله بین اتم های ذرات می شود تغییر در فاصله بین اتم های ذرات و نسبت سطح به حجم بالا در نانو ذرات، تأثیر متقابلی در خواص ماده دارد. تغییر در انرژی آزاد سطح، پتانسیل شیمیایی را تغییر می دهد. این امر در خواص ترمودینامیکی ماده (مثل نقطه ذوب) تأثیرگذاراست. به محض آنکه ذرات به اندازه کافی کوچک شوند، شروع به رفتار مکانیک کوانتومی می کنند. خواص نقاط کوانتومی مثالی از این دست است. نقاط کوانتومی بلورهایی در اندازه نانو می باشد که از خود نور ساطع می کنند. انتشار نور توسط این نقاط در تشخیص پزشکی و در کشاورزی و… کاربردهای فراوانی دارد. این نقاط گاهی اتم های مصنوعی نامیده می شوند چون الکترونهای آزاد آنها مشابه الکترونهای محبوس در اتمها، حالات گسسته و مجازی از انرژی را اشغال می کنند]132[.

پایان نامه ارشد: مدل‌سازی عددی هیدرولیك جریان و آبشستگی در پایین‌دست جریان ترکیبی همزمان از روی سرریز و زیر دریچه

یكی از عمده‌ترین مشكلات سازه‌هایی از قبیل سرریزها، دریچه‌ها و حوضچه‌های آرامش كه در بالادست بسترهای فرسایش‌پذیر قرار دارند، آبشستگی در مجاورت سازه است كه علاوه­‌بر تأثیر مستقیم بر پایداری سازه، ممكن است باعث تغییر مشخصات جریان و در نتیجه تغییر در پارامترهای طراحی سازه شود. به دلیل پیچیدگی موضوع، اكثر محققین آن را به صورت آزمایشگاهی بررسی كرده­اند كه با وجود تمام دست­آوردهای مهمی كه تاكنون در زمینه آبشستگی موضعی حاصل گردیده است، هنوز هم شواهد زیادی از آبشستگی گسترده در پایاب دریچه‌ها، سرریزها، شیب‌شكن‌ها، كالورت‌ها و مجاورت پایه‌های پل دیده می‌شود كه می‌تواند پایداری این سازه­ها را با خطرات جدی مواجه كند.

 

پدیده آبشستگی زمانی اتفاق می‌افتد كه تنش برشی جریان آب عبوری از آبراهه، از میزان بحرانی شروع حركت ذرات بستر بیشتر شود. تحقیقات نشان داده است كه عوامل بسیار زیادی بر آبشستگی در پایین‌دست سازه تأثیرگذار هستند كه از جمله آن­ها می‌توان به اندازه و دانه‌بندی رسوبات، عمق پایاب، عدد فرود ذره، هندسه سازه و … اشاره كرد (کوتی و ین[1] (1976)، بالاچاندار[2] و همکاران (2000)، کلز[3] و همکاران (2001)، لیم و یو[4] (2002)، فروک[5] و همکاران (2006)، دی و سارکار[6] (2006) و ساراتی[7] و همکاران (2008)).

 

دریچه­ ها و سرریزها به طور گسترده به منظور کنترل، تنظیم جریان و تثبیت کف، در کانال­های باز مورد استفاده قرار می­گیرند. بر اثر جریان ناشی از جت عبوری از رو یا زیر سازه­ها، امکان ایجاد حفره آبشستگی در پایین­دست سازه­ها وجود دارد که ممکن است پایداری سازه را به خطر اندازد؛ بنابراین تعیین مشخصات حفره آبشستگی مورد توجه محققین هیدرولیک جریان قرار گرفته است.

 

به منظور افزایش بهره‌وری از سازه­های پرکاربرد سرریزها و دریچه­ها، می‌توان آن­ها را با هم ترکیب نمود به‌طوری‌که در یک زمان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. با ترکیب سرریز و دریچه می‌توان دو مشکل عمده و اساسی رسوب‌گذاری در پشت سرریزها و تجمع رسوب و مواد زائد در پشت دریچه‌ها را رفع نمود. در سازه ترکیبی سرریز- دریچه، شرایط هیدرولیکی جدیدی حاکم خواهد شد که با شرایط هیدرولیکی هر کدام از این دو سازه به‌تنهایی متفاوت است.

 

2-1- تعاریف

 

1-2-1- سرریزها

 

یکی از سازه­های مهم هر سد را سرریزها تشکیل می­ دهند که برای عبور آب اضافی و سیلاب از سراب به پایاب سدها، کنترل سطح آب، توزیع آب و اندازه ­گیری دبی جریان در کانال­ها­ مورد­استفاده قرار می­گیرد. با توجه به حساس بودن کاری که سرریزها انجام می­دهند، باید سازه­ای قوی، مطمئن و با راندمان بالا انتخاب شود که هر لحظه بتواند برای بهره ­برداری آمادگی داشته باشد.

 

معمولاً سرریزها را بر حسب مهم­ترین مشخصه آن­ها تقسیم ­بندی می­كنند. این مشخصه می ­تواند در رابطه با سازه كنترل و كانال تخلیه باشد. بر حسب این­كه سرریز مجهز به دریچه و یا فاقد آن باشد به ترتیب با نام سرریزهای كنترل­دار و یا سرریزهای بدون كنترل شناخته می­شوند.

 

2-2-1- دریچه ها

 

دریچه­ها سازه ­هایی هستند که از فلزات، مواد پلاستیکی و شیمیایی و یا از چوب ساخته می­شوند. از دریچه­ها به منظور قطع و وصل و یا

پایان نامه

 كنترل جریان در مجاری عبور آب استفاده می­ شود و از لحاظ ساختمان به گونه­ ای می­باشند كه در حالت بازشدگی كامل عضو مسدود كننده كاملاً از مسیر جریان خارج می­گردد.

 

دریچه ­ها در سدهای انحرافی و شبکه­ های آبیاری و زهکشی کاربرد فراوان دارند. همچنین برای تخلیه آب مازاد کانال­ها، مخازن و پشت سدها به کار می­روند (نواک[1] و همکاران، 2004).

 

دریچه­ ها به صورت زیر دسته­بندی می­شوند:

 

بر اساس محل قرارگیری: دریچه­های سطحی و دریچه­های تحتانی. دریچه سطحی تحت فشار کم و دریچه تحتانی تحت فشار زیاد قرار می­گیرند.

 

بر اساس کاری که انجام می­دهند: دریچه­های اصلی، تعمیراتی و اضطراری. دریچه اصلی به طور دائم مورد بهره ­برداری قرار می­گیرند. برای تعمیرات از دریچه تعمیراتی و در زمان حوادث از دریچه اضطراری استفاده می­ شود.

 

بر اساس مصالح بدنه: دریچه­های فولادی، آلومینیومی، بتنی مسلح، چوبی و پلاستیکی. دریچه فولادی به خاطر استقامت زیاد به صورت وسیع مورد استفاده قرار می­گیرد.

 

بر اساس نوع بهره­برداری: دریچه­ های تنظیم کننده دبی و دریچه­های کنترل­ کننده سطح آب

 

بر اساس مکانیزم حرکت: دریچه­ های خودکار، هیدرولیکی، مکانیکی، برقی و دستی. دریچه خودکار بر اساس نیروی شناوری و وزن دریچه و بدون دخالت انسان کار می­ کند. دریچه هیدرولیکی بر اساس قانون پاسکال عمل می­نماید. دریچه برقی از دستگاه­های برقی، دریچه مکانیکی با بهره گرفتن از قانون نیرو و بازو و بالاخره دریچه دستی به صورت ساده با دست جابه­جا می­شوند.

 

بر اساس نوع حرکت: دریچه ­های چرخشی، غلطان، شناور و دریچه­هایی که در امتداد یا در جهت عمود بر جریان حرکت می­نمایند.

 

بر اساس انتقال فشار آب: دریچه­ ها ممکن است فشار را به طرفین یعنی به پایه­ های پل یا به تکیه­ گاه­ ها منتقل نمایند و یا ممکن است نیروی فشار آب بر کف منتقل شود و یا ممکن است نیروی فشار آب به هر دو یعنی هم تکیه­ گاه­ ها و هم بر کف منتقل شود.

 

3-2-1- سازه ترکیبی سریز – دریچه

 

تركیب سرریز – دریچه یكی از انواع سازه­های هیدرولیكی می­باشد كه در سال­های اخیر عمدتاً برای عبور سیال در مواردی كه سیال حاوی سرباره و رسوب به صورت همزمان می­باشد (مانند كانال عبور فاضلاب) بكار رفته است. سازه ترکیبی سرریز – دریچه با تقسیم دبی عبوری از بالا و پایین خود از انباشت سرباره و رسوب در پشت سازه جلوگیری می­كند. از دیگر كاربردهای عملی این تركیب، می­توان انواع سدهای تأخیری را نام برد. در سدهای تأخیری برای جلوگیری از انباشت رسوب در پشت سد كه منجر به كاهش حجم مفید مخزن می­گردد اقدام به تعبیه تخلیه­كننده­های تحتانی می­گردد. از طرف دیگر این نوع سدها به علت برآورد اهداف طراحی و عبور سیلاب­های محتمل به صورت روگذر نیز عمل می­كنند كه از این دو جهت، مدل تركیبی سرریز – دریچه ایده مناسبی برای تحلیل این نوع سدها می­باشد. اگرچه این نوع سازه دارای كاربرد فراوانی در سازه­های هیدرولیكی می­باشد.

 

جهت به حداقل رساندن مشكلات در سرریزها و دریچه‌ها و همچنین جهت بالا بردن مزایای آن­ها می‌توان از سازه تركیبی سرریز – دریچه استفاده كرد به طوری كه در یک زمان، جریان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. این وسیله تركیبی می‌تواند مشكلات ناشی از فرسایش و رسوب­گذاری را مرتفع نماید (دهقانی و همكاران، 2010).

 

همچنین با این روش، رسوبات و مواد زائد در پشت سرریزها انباشته نمی‌‌‌شوند (ماخرک، 1985).

 

مشكلاتی را كه در اثر وجود مواد رسوبی یا شناور در آب انتقالی برای آبیاری حاصل می‌شود، می‌توان با بهره گرفتن از سازه تركیبی سرریز – دریچه به مقدار زیادی كاهش داده که امكان اندازه‌گیری دقیق‌تر و ساده‌تر را به همراه دارد ( اسماعیلی و همكاران، 1385).

 

سیستم سرریز – دریچه امکان عبور جریان را از پایین و بالای یک مانع افقی در قسمت میانی مجرا به طور همزمان فراهم نموده، بدین صورت که مواد قابل رسوب را در پشت دریچه به صورت زیرگذر و مواد شناور را به صورت روگذر سرریز عبور می­دهد (شکل 1- 1).

 

از این­رو تعیین شکل و حداکثر عمق آبشستگی در پایین­دست سرریز و دریچه ترکیبی به منظور تثبیت وضعیت بستر می ­تواند مفید واقع شود.

 

[1] Novak

 

[1] Kuti &Yen

 

[2] Balachandar

 

[3] Kells

 

[4] Lim &Yu

 

[5] Faruque

 

[6] Dey & Sarkar

 

[7] Sarati

 
مداحی های محرم