فناوری ارسال سیگنال صوتی از میان لایه های مختلف آب در سیستمهای مخابرات زیر آب کاربرد فراوانی دارد. سیگنالهای آكوستیكی هنگامی كه از میان لایه های آب عبور كنند، در زمانهای مختلف، دچار تغییراتی بر روی شكل و فاز میشوند. اقیانوس محیط پویا و دائما” در حال تغییر است و هر کدام از پدیدههای اقیانوسی دارای خصوصیات منحصر به فردی میباشند. به طور مثال پدیدههای همچون جریانات، امواج داخلی و تلاطمهای کوچک مقیاس، لایه بندی افقی، جریانات نفوذی و افت و خیزهای دما و شوری در راستای قائم باعث ایجاد تغییرات بر روی سیگنال آكوستیكی میشوند. هر كدام از این پدیده ها باعث ایجاد اكو بر روی سیگنال خروجی میشوند. تنها خصوصیت فیزیکی اقیانوس که بر انتشار امواج آکوستیکی تأثیر میگذارد، سرعت صوت میباشد که دارای مقدار عمومی m/s 1500 در اقیانوسهای استوایی و معتدل است (تغییرات چگالی نیز بر انتشار این امواج مؤثر هستند، اما این تغییرات روی تمام ستون آب اقیانوسی قابل چشم پوشی هستند، ولی در لایه های رسوبی در کف اقیانوس به عنوان فاكتور مهم در محاسبات در نظر گرفته میشود). سرعت صوت در اقیانوس تابعی از سه متغیر است: دما، شوری و فشار (یا عمق). این تابع، تابعی افزایشی از هر سه متغیر است. عبارتی ساده و تجربی برای سرعت صوت (m/s) برگرفته از مطالعه Mackenzie (1981) به صورت ذیل ارائه شده است.
كه c سرعت صوت بر حسب و عمق بر حسب متر و شوری بر حسب واحد در هزار (PPT) در محدوده ، T دما بر حسب درجه سلسیوس میباشد. یک بررسی معمولی، نشان میدهد سرعت صوت حدود m/s 4 به ازای یک درجه تغییر دما، m/s 5/1 به ازای افزایش صد متر عمق و m/s 1 برای افزایش PPT1 افزایش مییابد.
2-1- هدف تحقیق
به طور کلی، ناهمگونیهای افقی به دلیل جریانات، پدیها[1] و جبههها به وجود میآیند، همچنین ناهمگونیهای قائم به دلیل ساختار تغییرات ریز قائم دما و یا شوری ایجاد میشوند. در دریای عمان یکی از پدیدههای که در مطالعات قبلی به آن اشاره شده است، جریان آب شوری و گرمی است که از خلیج فارس به دریای عمان سرریز می شود. مطالعات زیادی در زمینه مشخصات این جریان انجام شده است. ورود این جریان نفوذی به دریای عمان باعث ایجاد وارونگی در دما و شوری در اعماق بین 200 تا 400 متری میشود و هر چه این جریان به اقیانوس هند نزدیکتر میشود از ضخامت آن کاسته می شود. این جریان نفوذی باعث ایجاد وارونگی در ساختار قائم سرعت صوت میشود. برای بررسی اثر این جریان بر روی انتشار صوت در برخی از مکانهای ایجاد وارونگی، شبیه سازی انتشار صوت در دو حالت وابسته به برد و مستقل از برد مورد بررسی قرار گرفته است. با توجه به مشکلات و محدودیتهای آزمایشهای آکوستیکی در مسیر جریان برون ریز خلیج فارس در محیط واقعی، سعی شده است با بهره گیری از یک مدل آزمایشگاهی، جریان برون ریز خلیج فارس را شبیه سازی نموده، و اثر این جریان را بر روی افت و خیزهای سیگنال آكوستیكی بررسی گردد.
1-2-1- ضرورت و اهمیت تحقیق
مدلسازی دقیق انتشار امواج صوتی، و بررسی اثرات محیطی، اولین قدم در طراحی و ساخت سیستمهای پیشرفته صنعتی و نظامی دریایی (زیر آبی) و برآورد کارآیی تجهیزات به کار گرفته شده در محیط زیردریا میباشد. تجهیزاتی که بر مبنای امواج صوتی کار میکنند در زمینههای مخابرات زیردریا، تعیین موقعیت و کشف هدفهای ناشناخته زیر دریا، کشتیرانی، ناوبری و هدایت زیردریایی، کنترل، مراقبت و دفاع ضد زیردریایی، زمینشناسی، آشکارسازی زیردریایی، صیادی پیشرفته، اقیانوس نگاری، نقشه برداری و تصویربرداری بستر دریا، و اکتشاف و استخراج منابع نفت و گاز، مورد استفاده قرار میگیرند. امروزه ابزار مدلسازی و شبیهسازی، مهمترین وسیلهای است كه استفاده كنندگان، طراحان سیستم و پژوهشگران میتوانند توسط آن، پارامترهای طراحی سیستمهای مورد نظر را در شرایط محیطی مختلف بررسی نمایند. ضمن اینكه، این كار (در مقایسه با انجام آزمایشهای تجربی در دریا) هزینه بسیار كمتر و بازدهی بیشتری دارد.
2-2-1- سوالات اساسی تحقیق
سئوالات اساسی این تحقیق شامل موارد ذیل است:
1- آیا ناهمگونی قائم محیط ناشی از دما و شوری بر روی انتشار صوت تاثیر دارند و چنانچه اثر دارند در چه فركانس هایی بر روی انتشار
صوت تاثیر می گذارند؟
2- آیا شار خروجی از خلیج فارس به دریای عمان (ناهمگونی افقی) باعث تغییر شكل و شیفت زمانی سیگنالهای آكوستیكی خواهد شد؟
3- آیا می توان در مدلسازی انتشار سرعت صوت فقط تغییرات قائم یک نیمرخ سرعت در نظر گرفت (مستقل از برد) و یا بایستی چند نیمرخ قائم در نظر گرفته شود؟
4- آیا تغییرات فصلی بر روی افت و خیزهای سیگنال آكوستیكی اثر دارد؟
3-2-1- نوآوری ها
1- تا کنون هیچ مطالعه ای در زمینه اثر جریان نفوذی (جریان خروجی خلیج فارس به دریای عمان) بر روی انتشار صوت در داخل كشور انجام نشده است.
2- در دنیا تا کنون هیچ مطالعه ای در زمینه اثر پراکندگی به واسطۀ جریان نفوذی در آزمایشگاه انجام نشده است.
3- مطالعه اثر ناهمگونی های قائم ناشی از دما و شوری بر روی انتشار صوت
4- شناسایی کانالهای صوتی عمیق و نیز کانال های سطحی به واسطۀ نفوذ جریان ترموهالاین در دریای عمان
3-1- نحوه انتشار صوت
یكی از پارامترهای موثر در انتشار صوت، تغییرات نیمرخ سرعت صوت میباشد. بر اساس تئوری پرتو چنانچه گرادیان سرعت صوت منفی باشد، پرتوها به سمتی که سرعت صوت کاهش مییابد، خم میشوند. ولی چنانچه گرادیان سرعت صوت مثبت باشد، پرتوها به سمت بالا خم میشوند. در نواحی كه امواج صوتی در آن نفوذ نمیکنند، ناحیه تاریك[1] میگویند. در ضمن مشابه این موضوع در هوا نیز وجود دارد. یعنی وقتی دمای نزدیک زمین سرد باشد امواج صوتی به پایین خم میشوند و بالعكس اگر هوا در ارتفاعات سردتر باشد امواج صوتی به بالا منحرف میشوند (شکل 1-1).
4-1- کانال صوتی عمیق
نیمرخ قائم سرعت صوت در آب عمیق در شکل (1-2a) نمایش داده شده است. در این شکل عمقی است که کمینه سرعت در آن رخ میدهد. این عمق، محور کانال صوتی زیر آبی است. بالای این محور، سرعت صوت عمدتا” به دلیل افزایش، دما زیاد میشود و در زیر این محور به دلیل فشار هیدروستاتیکی زیاد می شود. اگر چشمه صوت روی محور کانال یا نزدیک آن قرار بگیرد، برخی بخشهای انرژی صوتی در کانال به دام انداخته میشوند و داخل آن منتشر می شود، بدون اینکه به سطح و یا بستر برخورد كند. شکل (1-2b) شماتیكی از كانال صوتی عمیق را نشان میدهد. این شکل نمونه ای از انتشار صوت در کانال است.
این نوع موجبر بین عمقهای مشاهده می شود. عمق محور کانال معمولا” 1000 تا 1200 متر است. در مناطق استوایی این عمق به 2000 متر و در عرضهای بالاتر به نزدیک سطح منتقل می شود. بیشترین مسافت طی شده در کانالهای صوتی عمدتا” توسط جذب آب دریا محدود می شود. انتشار صوت با فرکانس پایین به دلیل جذب پایین در این كانال، می تواند تا صدها و بلکه هزارها کیلومتر منتشر شود (Etter, 2003).
5-1- رفتار موج آكوستیكی در لایهها
1-5-1- انعکاس
انتشار صوت در سطح دریا، کف دریا، اشیاء غرق شده و تغییرات خصوصیات فیزیکی باعث میشوند، که سیگنالهای اضافی با طول پالسهای متفاوت در گیرنده مشاهده گردد. همان طوری که در شکل (1-3) مشاهده می شود همیشه اولین سیگنال مربوط به سیگنال مستقیمی است که به گیرنده میرسد (مسیر یک)، سیگنال بعدی که کمی دیرتر از سیگنال مستقیم میرسد، به خاطر انعکاس از بستر است(مسیر دوم)، و مسیر سوم که دیرتر از سیگنال بستر میرسد، به دلیل بازتاب از سطح میباشد. به دلیل اینکه هر کدام دارای مسافتهای متفاوتی میباشند، بنابراین گیرنده در زمانهای متفاوتی پالسها را دریافت می کند، و نیز به علت جذب،گسترش هندسی، تفاوت در زمان رسیدن، میزان بازتاب از سطوح مختلف پالسهای دریافتی شبیه همدیگر نمیباشند(Bradley and Stern 2008).
2-5-1- شکست(انکسار)
چنانچه سیگنالها در محیطی که سرعت صوت تغییر نکند حرکت کنند، سیگنال در یک مسیر مستقیم حرکت میکند ولی هنگامی که محیط ناهمگن باشد، به دلیل وجود تغییرات عمق، دما و شوری مسیر انتشار در یک مسیر منحنی شکل حرکت میکند (شكل 1-4)؛ بنابراین پالسهای متفاوتی در سیگنال مشاهده میشود. در این مثال فرض میشود که سرعت صوت با عمق افزایش یابد هنگامی که این نوع نیمرخ ایجاد شود پرتوهای صوتی به طرف بالا خم میشوند اما پرتوها در ناحیهای که سرعت صوت سریعتر از مسیر سرعت مسیر مستقیم میباشند، حرکت میکنند. بنابراین، این سیگنال قبل از سیگنال مستقیم شنیده خواهد شد. همان طوری که در شکل (1-4) ملاحظه میکنید. اما به دلیل اتلاف صوت (بستگی به طول مسیر دارد)، طول مسیر منحنی شکل بیشتر از مسیر مستقیم است، بنابراین، این پرتو اتلاف بیشتری دارد در نتیجه این سیگنال در اسیلوسکوپ در ابتدا ولی با دامنه کمتری مشاهده میشود.
3-5-1- پراکندگی
همان طوری که در شکل (a1-5) مشاهده میکنید، چنانچه مرز اقیانوس صاف نباشند و دارای ناهمواریهای باشد پیچیدگیهای اضافی در شکل سیگنال اضافه خواهد شد. در این وضعیت، پراكندگی، باعث ایجاد مسیرهای چندگانه با اختلاف کوچک در زمان و دامنه در گیرنده خواهد شد. پراکندگی به واسطه سطح دریا و حرکت امواج از پدیده های دیگر موجود در دریا، باعث ایجاد پیچیدگی بیشتری در سیگنال دریافتی خواهد شد (شكل b1-5).
6-1- جذب صوت و پراکندگی آن در دریا
انرژی آکوستیکی یک موج صوتی که در اقیانوس منتشر میشود تا حدی جذب میشود، یعنی انرژی به گرما تبدیل شده و تلف میشود که ناشی از پراکندگی توسط ناهمگنیهای موجود در دریا است. معمولا” تمایز بین جذب و پراکندگی در اقیانوس امکان پذیر نیست. هر پدیدهای در محیط دریا ممکن است در تضعیف صوت مشارکت داشته باشد(Kalangi Pullarao Prasanth,2005).
ضریب استهلاک انرژی موج صوتی با فرمول تورپ در حوزه فرکانس معتبر است. برای محدوده فرکانس های متفاوت روابط مختلفی نیز ارائه شده است که در شکل (1-6) نشان داده شده و عبارت است از:
الف- رابطه Thorp: در حوزه فرکانس معتبر است و در شکل1-6 مشاهده میشود.
که f فرکانس بر حسب kHz است.
[1] shadow zone
[1] eddy
:
اگر تمامی پدیدههای فیزیكی اطراف ما خطی بودند، هم فیزیک خسته كننده بود و هم زندگی بدون مشاهده بسیاری جذابیتها سپری میشد. خوشبختانه ما در یک دنیای غیرخطی زندگی میكنیم. البته به خاطر داشته باشیم كه همانطور كه خطی بودن فیزیک را جذاب میكند غیرخطی بودن نیز فیزیک را زیباتر میكند]1[.
پدیدههای اپتیک خطی در محیط خطی رخ میدهند و در مقابل آن پدیدههای اپتیک غیرخطی در محیط غیرخطی رخ میدهند اگر ویژگیهای اصلی این دو محیط به دنبال هم بیان شوند به درك بهتری راجع به محیط غیرخطی خواهیم رسید. به همین علت ما در اینجا پس از بیان تاریخچه توضیح مختصری راجع به این دو محیط میدهیم و سپس به صورت تخصصیتر وارد مباحث مربوط به اپتیک غیرخطی میشویم.
تاریخچه
اولین بار در سال 1961 میلادی، آزمایشی كه فرانكین[1] و وین ریچ[2] در دانشگاه میشیگان انجام دادند. نشان داد كه اگر نور با طول موج به بلور كوارتز تابانده شود نوری با طول موج خارج میشود و این آزمایش در واقع تولد اپتیک غیرخطی به حساب میآید. در واقع این پدیده مشاهده تولد هماهنگ دوم[3] است این آزمایش روشی در بدست آوردن تابشهای همدوس با توان بالا است كه در آن میتوان طول موج كوتاهتر به دست آورد. چشمهی نور معمولی برای چنین آزمایشهایی خیلی ضعیف است. در كل میدانی در حدود یک اثر غیرخطی در محیط القا میكند كه این میدان متناظر با باریكهای به شدت تقریبی است. كه به همین دلیل برای مشاهده هماهنگ دوم باریكه لیزر به كار میرود ]1[. در كل بیشترین مطالعه روی این موضوع از قرن بیستم و بعد از آن صورت گرفته است.
1-1- ویژگی های محیط خطی
الف) اصل برهم نهی در این محیط صادق است: میدانیم نور یک موج الكترومغناطیس است برای اینكه اثرات تركیب (برهم نهی) را به درستی متوجه شویم باید برایند بردار موج را در یک نقطه از فضا كه در آن دو جابهجایی مستقل و با هم وجود دارند دقیقاً تعیین كنیم.
ما میتوانیم اصل برهم نهی را به بیان دیگر نیز ذكر كنیم. به این صورت تعریف میشود كه اگر و جوابهای مستقل معادله موج آنگاه تركیب خطی نیز یک جواب معادله است.
در واقع از آنجایی كه امواج الكترومغناطیس دارای میدان الكتریكی و میدان مغناطیسی میباشند برهم نهش این امواج را به صورت زیر نیز
میتوان بیان نمود.
ب) فركانس نور زمانی كه به محیط خطی وارد میشود، به هنگام خروج از این محیط، تغییر نمیكند.
ج) در محیط خطی نوری، نور دیگر را تقویت نمیكند و باریكه نور در محیط خطی برهم كنش نمیكنند.
د) هر محیط خطی دارای یک ضریب شكست است كه تغییر نمیكند و به شدت نور بستگی ندارد و فقط با سرعت نور سازگار است.
2-1- ویژگیهای محیط غیرخطی
الف) اصل بر هم نهی صادق نیست
ب) فركانس نور زمانی كه به یک محیط غیرخطی وارد میشود، به هنگام خروج از این محیط تغییر میكند.
ج) دو باریكه نور در محیط غیرخطی میتوانند با یكدیگر آمیخته شوند و یكدیگر را تقویت كنند كه در این مرحله میگوییم اختلاط صورت گرفته است.
د) در محیطهای غیرخطی ضریب شكست تغییر میكند و به شدت نور بستگی دارد.
3-1- قطبیدگی محیط خطی و محیط غیرخطی
پدیدههای غیرخطی در نهایت از ناتوانی دو قطبیهای محیط اپتیكی برای پاسخ خطی به میدان متناوب Eی وابسته به باریكه نور ناشی میشوند هستههای اتمی و الكترونهای درونی به ترتیب سنگینتر و مقیدتر از آن هستند كه به میدان متناوب E در بسامد نور (حدود تا ) پاسخ دهند. بنابراین الكترونهای بیرونی اتمهای ماده عمدتاً باعث قطبش محیط اپتیكی توسط میدان Eی باریكه میشوند. وقتی نوسانهای این الكترونها در پاسخ به میدان كوچك باشند قطبیدگی متناسب با میدان E است، كه توضیح این تناوب را كامل بیان میكنیم.
اعمال میدان در محیط منجر به انتقال كوچك ابر الكترونی نسبت به هستهی آن میشود و یک دو قطبی القایی بوجود میآورد. گشتاور دو قطبی P ناشی از هر اتم یا مولكول با حاصل ضرب بار جابهجا شده q و فاصله موثر بین بارهای مثبت و منفی تعیین میشود و یا جهت گشتاور دو قطبی از بار منفی به بار مثبت است بزرگی گشتاور دو قطبی در یک ماده معین بستگی به این دارد كه بار تحت تأثیر یک میدان الكتریكی معین تا چه اندازه آسان جابهجا شود. آنگاه قطبیدگی P برای این محیط بنا به تعریف عبارت است از مجموع گشتاورهای دو قطبی در واحد حجم:
كه در آن N تعداد دو قطبیها در واحد حجم و e قدرمطلق بار الكترون است.
الكترونها طوری رفتار میكنند كه انگار نیروهای مقید كننده آنها به هستهها نیروی كشسانی هستند، كه با قانون هوك داده میشوند، كه در آن نیروی باز گرداننده متناسب با جابهجایی و در جهت خلاف آن است. هستههای سنگینتر را میتوان ساكن گرفت، زیرا این هستهها نمیتوانند به تغییرات سریع میدان موج الكترومغناطیسی در ناحیه اپتیكی طیف پاسخ دهند. بنابراین میتوان از الگوی سادهای استفاده كرد كه در آن الكترونها با نیروهای فنر گونه به هسته ثابت مقید میشوند. اما در میدان الكتریكی متناوب، نوسانهای واداشته الكترونها مقدار مشخصی انرژی، شامل انرژیی كه الكترونها به نوبه خود تابش میكنند و انرژی برهم كنش با اتمهای مجاور كه به صورت گرما ظاهر میشود، از تابش فرودی میگیرند. بنابراین الگویی كه برای الكترونهای نوسان كننده به كار میرود یک نوسانگر هماهنگ میرا با نیروی اصطكاكی متناسب با سرعت است.
[1] . Peter Franken
[2] . G. Weinreich
[3] . Second Harmonic Generation
:
امروزه بطور گستردهای نانو صفحات چند لایه ششضلعی بورن- نیترید، بعلت خواص الكترونی و اپتیكی بسیار جذاب آنها، بطور تجربی و نظری مورد مطالعه قرار گرفتهاند. هدف اصلی این پروژه بررسی خواص الکترونی و اپتیکی نانو ساختارهایی همچون، نانو صفحات بورن- نیترید، با بهره گرفتن از نظریه های GW و BSE در محدوده پاسخ خطی میباشد. در مبحث خواص الکترونی ما به محاسبه انرژی و ساختار نواری و طیف چگالی حالت شبه- ذرات خواهیم پرداخت. همچنین، از یک مدل بستگی قوی برای ساختار نواری تك- لایه و دو- لایه بورن- نیترید استفاده میكنیم و شاخص های جهش و انرژیهای جایگاهی را با بهره گرفتن از انطباق طرح بستگی قوی و داده های نظریه تابعی چگالی بدست خواهیم آورد. در مبحث خواص اپتیکی، قسمت های حقیقی و موهومی (جذب اپتیکی) تابع دیالکتریک، در اثر قرار دادن نانو صفحه در دو راستای میدان موازی (قطبش موازی) و میدان عمودی (قطبش عمودی)، و همچنین انرژی و اثرات اکسیتونی و تابع توزیع احتمال الکترون در اثر قرار دادن مکان حفره در جایگاه ثابت، را بدست خواهیم آورد.
بنابراین، با توجه به اینکه محاسباتی در زمینه تاثیر آثار بس- ذرهای برای نانو صفحات چند لایه ششضلعی بورن- نیترید انجام نشده است، این نتایج برای مطالعات تجربی و نظری آینده روی اینچنین ساختارها می تواند مفید باشد.
پیشگفتار:
در سالهای اخیر، پژوهشهای گستردهای در زمینه سامانههای نانو ساختار انجام شده است، بخصوص با كوچكتر شدن اجزای تشكیل دهنده قطعات الكترونیكی، بررسی نانو ساختارها اهمیت زیادی در زمینه علوم و صنعت پیدا كرده است. خواص فیزیكی این نانو ساختارها، بویژه خواص الكترونی و اپتیكی آنها، به رفتار و حالتهای الكترونی آنها بستگی دارد. از اینرو، محاسبه حالت های الكترونی مواد و تعیین ساختار نواری انرژی در آنها از مهمترین مباحث پژوهشی نظری و تجربی در فیزیک ماده چگال است. با توجه به این كه بطور کلی گاز الكترون در یک جامد یک سامانه برهمكنشگر است، بنابراین راه حل اساسی برای محاسبه حالتهای الكترونی مواد به حل مسئله بس- ذرهای منتهی می شود. از اینرو، از آغاز پایه گذاری علم فیزیک ماده چگال، تلاش پژوهشگران بر این بوده است تا بعنوان یک تقریب، مسئله بس- ذرهای گاز الكترون جامد را به یک مسئله قابل حل تبدیل نمایند. كلیه متون مربوط به زمینه ماده چگال و روشهای مختلف و گوناگون محاسبات ساختار نوارهای انرژی الكترونی جامدات، حكایت از به كارگیری انواع تقریبهایی است كه برای حل معادله شرودینگر انجام می شود. خوشبختانه علیرغم تقریبی بودن روشهای بس- ذرهای، این روشها موفقیت عملی فوقالعادهای را از خود نشان دادهاند و بنابراین در مواردی كه پیچیدگیهای ناشی از آثار برهمكنش الكترونها در رفتار نهایی سامانه مؤثر باشند باید در حد امكان و با روشهای مختلف حداكثر آثار بس- ذرهای را در محاسبات دخالت داد. در هر صورت باید توجه داشت که هر روش تقریبی گستره اعتبار خاصی دارد.
اما امروزه، هدف اغلب پژوهشهای نظری بر پایه مکانیک کوانتوم، در زمینه مباحث فیزیک ماده چگال و شیمی، یافتن برهمکنشهای اصلی نمی باشد بلکه پرداختن به حل معادله شرودینگر از یک تابع هامیلتونی مشهور است که از حل آن اطلاعات مفیدی حاصل می شود. به هرحال این هامیلتونی یک مسئله بس- ذرهای را توضیح میدهد و برای تعداد بیشتر از 10 الکترون، حل دقیق آن از لحاظ عددی عملاً امکان پذیر نیست. بعلاوه حل دقیق آن، شامل مجموعه ای از اطلاعات است که بدون سادهسازی و تجزیه و تحلیل، به سختی قابل فهم است و برای یک مسئله و شرایط مشخص حاوی تعداد زیادی جزئیات است، که احتمالاً مورد علاقه نیست [1]. بنابراین بازنویسی مجدد مسئله و کار با توابع هامیلتونی مؤثر یا مقادیر انتظاری انتخاب شده که برای حل یک مسئله کاهش یافته مناسب میباشند، اغلب بهتر است. این روش بطور ایدهال هم محاسبه و هم تجزیه و تحلیل مقادیر مدنظر را ساده خواهد نمود.
نظریه تابعی چگالی[1] (DFT) [2و3] یكی از متداولترین روشهایی است كه برای محاسبات خواص حالت پایه طراحی شده است و بر پایه اطلاع از تابع چگالی n(r) بجای تابع موج بس- ذرهای كامل از یک سیتم N ذرهای پایهگذاری شده است. مبانی نظریه DFT بر اساس نظریه هوهنبرگ-كوهن- شم [2] بصورت زیر است:
1- چگالی الکترونی حالت پایه از یک سامانه برهمکنشی از الکترون، می تواند بطور کامل، پتانسیل خارجی v®، که الکترونها تجربه می کنند و بنابراین هامیلتونی، تابع موج بس- ذرهای، و همه کمیتهای مشاهده پذیر از سامانه، را تعیین کند.
2- یک تابعی F[n]وجود دارد بطوریکه انرژی کل E[n] می تواند بصورت زیر نوشته شود:
(1-1)
این F یک تابعی عمومی است بطوریکه وابستگی تابعیاش به چگالی برای همه سامانههای با برهمکنش ذره- ذره مشابه، یکسان است.
معادلات كوهن- شم [2](KS) که در سال 1965 معرفی گردید، نظریه تابعی چگالی را به ابزاری خاص برای بدست آوردن چگالی حالت پایه تبدیل كرد. كوهن- شم سامانه برهمكنشگر واقعی را كه در آن تمام الكترونها به هم مربوطاند و تحت تأثیر پتانسیل واقعی سامانه قرار دارند را با سامانهای غیر برهمكنشگر كه در آن ذرات در معرض پتانسیل مؤثری قرار میگیرند، عوض كردند. با معرفی یک سامانه فرضی، سامانه کوهن- شم، شامل الكترونهای بدون برهمكنشی و با اعمال یک میدان متوسط موضعی شامل پتانسیل هارتری، پتانسیل خارجی و برهمكنشهای تبادلی- همبستگی[3](xc)، در روشی مشابه با روش هارتری- فوك به معادلات خود- سازگاری رسیدند كه با روش آنها چگالی حالت پایه سامانه محاسبه میگردد. با قرار دادن این چگالی در تابعی انرژی، انرژی حالت پایه محاسبه می شود. درطرح کوهن- شم، الکترونها ازیک معادله شروینگر تک- ذرهای ساده با یک پتانسیل خارجی مؤثر vKS پیروی مینمایند:
(2-1)
اوربیتال كوهن- شم iφ و ویژه مقادیر كوهن- شم iε بدست آمده، بطور کلی دارای یک معنی و مفهوم فیزیکی مستقیمی نمیباشند اما برای ساختن چگالی درستی از سامانه برهمكنشی بر طبق رابطه زیر استفاده میشوند:
(3-1)
با توجه به اینكه vKS تابعی از چگالی الكترونی است، این معادلات باید بصورت خود سازگار حل شوند. پتانسیل مؤثر vKS معمولاً بصورت زیر نوشته می شود:
(4-1)
در این معادله، جمله اول پتانسیل خارجی، برهمكنش كولنی بین الكترونها و هسته، میباشد و جمله دوم شامل قسمت كلاسیكی برهمكنش الكترون- الكترون (هارتری) میباشد. پیچیدگی مسئله در پتانسیل همبستگی- تبادلی vxc[n]® نهفته است كه بصورت vxc[n]®=δExc[n]/δn® تعریف می شود كه در آن Exc[n] انرژی همبستگی- تبادلی است.
تقریبهای بسیار مؤثری برای محاسبه Exc[n] بیان شده است، نظیر تقریب چگالی موضعی[4] (LDA) [3] یا تقریب گرادیان تعمیم یافته[5] (GGA) [4] و بسیاری از خواص حالت پایه نظیر پارامترهای شبكه یا فركانسهای فونونی، امروزه با بهره گرفتن از اصول اولیه با دقتی حدود چند درصد محاسبه میشوند. با این وجود خاصیتهای حالت پایهای وجود دارند که حتی برای سامانههای ساده بخوبی انجام نشده است. تنها حدود 10% از انرژیهای پیوندی در LDA محاسبه میشوند و یا گزارشهای نادرستی كه برای خاصیتهای پاسخ استاتیك، همانند ثابت دیالكتریک ∞ε، كه اغلب بطور قابل ملاحظهای زیاد محاسبه میشوند، بیان شده است [5]. سامانههای همبستگی قوی نیز مثالی است كه تقریبهای ذكر شده بالا قادر به توصیف خواص الكترونی و اپتیكی آنها نمیباشند [6]. اینچنین مسئلههایی در محاسبه خاصیتهای حالت پایه، در اعتبار استفاده از تقریبهای بكارگیری شده، محدودیتهایی ایجاد میكند.
نکته مهم دیگر از حالت پایه مربوط به نظریه تابعی چگالی كوهن- شم، برانگیختگیها (پاسخ اپتیكی به میدان الكتریكی وابسته به زمان) میباشند كه در این نظریه قابل دسترس نیستند. البته هیچ اشكالی به تقریبهای موجود وارد نیست، بلكه واقعیت این است كه نظریه تابعی چگالی برای توصیف چنین پدیدههایی کارآمد نیست. در حقیقت، حتی اگر بتوانیم ویژه مقادیر كوهن- شم را بصورت دقیق محاسبه كنیم، اختلاف آنها لزوماً نزدیک به انرژیهای برانگیخته اندازه گیری شده، نخواهد بود و دوم اینكه آنها برای انرژی الكترونهای اضافه شده یا حذف شده هیچ توضیحی ندارند. بنابراین شکاف انرژی كوهن- شم در گزارشات عمومی نسبت به شکافهای انرژی اندازه گیری شده، بسیار كوچك است كه این به تقریبهای انتخاب شده برای پتانسیلهای همبستگی- تبادلی وابسته است. اگر بخواهیم با یک هامیلتونی مؤثر كه بتواند ویژه مقادیر را برای انرژی الكترونهای اضافه شده به سامانه یا حذف شده از آن، یا بعبارت دیگر انرژیهای برانگیختگی، تعیین کند کار کنیم، اطلاع از چگالی حالت پایه کافی نیست. برای این منظور دو رهیافت ویژه را مورد توجه قرار میدهیم:
ابتدا، چگونگی انتشار و نوسانات ذرات در سامانه مورد نظر را بررسی میکنیم كه منجر به پیدایش توابع همبسته مرتبط با توابع پاسخ می شود (همانند پاسخ خطی برای جذب اپتیكی) بطوریکه این توابع همبسته، توابع گرین تك ذره، دو ذره و یا مراتب بالاتر هستند. با بهره گرفتن از تابع گرین تك- ذرهای كه مربوط به انتشار الكترون یا حفره است، میتوان انرژی الكترون اضافه شده یا حذف شده را اندازه گیری كرد. بعنوان مثال میتوان به آزمایشات اندازه گیری مستقیم و معكوس تابش نور به ماده اشاره کرد[6]. علاوه بر این انرژیهای برانگیختگی را میتوان از قسمت حفره- ذرهی تابع گرین دو ذرهای، كه به سهم خود قطبهایی در انرژیهای برانگیختگی دارد، بدست آورد. بخش کاهشپذیر از تابع چهار- نقطهای L(r, r1, r´, r1´) مربوط به تابع گرین دو- ذرهای، منجر به تابع پاسخ دونقطهای (r, r´, ω)χ می شود كه طیف قابل اندازه گیری، همانند طیف جذب و یا طیف اتلاف انرژی الكترون[7](EELS) را مشخص میكند. نظریه اختلال بس- ذرهای[8] (MBPT)، چارچوبی از تقریبهای مناسب برای اینچنین توابع گرین، كه قابل دستیابی هستند، ارائه میدهد. بطور خاص تقریب GW، كه در سال 1965 بوسیله لارس هدین[9] [7] معرفی شد، بصورت بسیار موفق انرژی الكترونهای اضافه شده یا حذف شده برای فلزات، نیمرساناها و نارساناها را توصیف میكند و بنابراین یكی از روشهای مورد انتخاب برای توصیف آزمایشهایی همچون اندازه گیری مستقیم و معكوس تابش نور به ماده میباشد. در خصوص برانگیختگیهای طبیعی، معادله بته – سالپیتر[10](BSE)، نقطه شروع خوبی برای تقریبهایی از χ [11-8] خوهد بود. بنابراین، برای یک توصیف كامل و درك فیزیكی قابل اطمینان از یک سامانه برهمكنشگر، بعلت ظاهر شدن توابعی نظیر L(r, r1, r´, r1´) كه مهمترین خاصیت آنها غیر جایگزیده بودن آنهاست، بجای توابع جایگزیده n(r)، هزینه بالای محاسباتی باید پرداخت شود.
دومین راه، محاسبه تحول زمانی تابعی چگالی برای سامانهای است كه در معرض یک پتانسیل خارجی وابسته به زمان قرار گرفته است. تابع پاسخ χ، برای مثال، بطور مستقیم از رابطه پاسخ خطی بین تغییرات پتانسیل خارجی و چگالی القاء شده بدست می آید . این روش باعث تعمیم نظریه تابعی چگالی به نظریه تابعی چگالی وابسته به زمان[11](TDDFT) [16- 12] می شود. با مبنا قرار دادن نظریه رانگ- گراس[12]، میتوان بطور مستقیم خط سیر مکانیک کوانتومی در TDDFT از سامانه تحت تاثیر توسط پتانسیل خارجی وابسته به زمان را، از طریق بررسی کمیت مورد نظر در بینهایت (به جای به کمینه رسانیدن انرژی کل، آنطوری که برای حالت پایه انجام شد)، مشابه با مکانیک کلاسیک، بدست آورد. بنابراین میتوان معادلات کوهن- شم وابسته به زمان را بصورت تعمیمی از حالت استاتیک بدست آورد و از آنها توابع پاسخ توضیح دهنده برانگیختگیهای طبیعی سامانه را محاسبه کرد. در این حالت، مشکل پیدا کردن تقریبهای مناسب برای پتانسیل همبستگی- تبادلی وابسته به زمان vxc[n](r,t) میباشد. باید توجه داشت که وابستگی تابعی به چگالی در کل فضا و در همه زمانهای گذشته میباشد. تقریبهای زیادی برای سامانههای محدود پیشنهاد و امتحان شده اند. حتی تقریب بسیار ساده چگالی موضعی بیدرو[13](ALDA که میتوان آن را LDA وابسته به زمان نیز نامید) که بصورت داده می شود، در بسیاری از موارد بسیار موفق بوده است [12و 17].
امروزه، استفاده از روشهایی نظیر GW ، BSE و TDDFT بطور مداوم در حال گسترش است که در آن برهمکنشها مهم میباشند. البته حل مستقیم معادله شرودینگر امکان پذیر نمی باشد. پژوهش حاضر حاوی مرور و بررسی روشهای MBPT، GW و BSE، برای سامانههای پیچیده درزمینه های نانوفناوری، ذخیره داده ها و الکترونیک نوری[14] میباشد.
فصل اول: نظریه تابعی چگالی
1-1- نظریه تابعی چگالی
از آنجاییکه پژوهش حاضر مربوط به شبیهسازی نظری سامانههای واقعی مورد استفاده در فنآوریهای قابل سنجش میباشد، از روشهای بكارگیری شده و مؤثر برای موفقیت این مطالعه استفاده میكنیم. برای درك خواص حالت پایه الكترونی سامانه، از روش محاسبات اولیه[1] بر پایه نظریه تابعی چگالی (DFT) بهره گرفتهایم. گرچه كارآیی نظریه تابعی چگالی شناخته شده است اما برای در نظر گرفتن خصوصیتهای حالت برانگیخته، مربوط به برانگیختگیهای طبیعی و بار نظیر انتشار و جذب اپتیکی، مجبور به استفاده از نظریه اختلال بس- ذرهای(MBPT) خواهیم بود.
بنابراین این بخش و بخش بعدی را با خلاصهای از بعضی ویژگیهای مهم و البته شناخته شده مربوط به روشهای DFT و MBPT مورد استفاده در كدهای كامپیوتری، برای سامانه مورد نظر دنبال میكنیم.
1 Ab initio
1 Density-Functional Theory
2 Kohn-Sham
1 Exchange- correlation
2 Local Density Approximation
3 Generalized Gradient Approximations
1 Direct and inverse photoemission
2 Electron energy loss spectra
3 Many-body perturbation Theory
4 Lars Hedin
1 Bethe-Salpeter Equation
2 Time-Dependent Density-Functional Theory
3 Runge- Gross
4 Adiabatic local density approximation
5 Optoelectronic
ای بر کیهان شناسی
1-1- اصول کیهان شناسی
برای بررسی کیهان اصولی را به نام اصل کیهانشناسی[1] فرض میکنند:
۱-جهان همگن[2] است.
۲-جهان همسانگرد[3] است.
3-هیچ نقطهای در جهان بر نقاط دیگر ارجح نیست.
بنا به شرایط اولیه و جزئیاتی که نظر گرفته میشود الگوهای متفاوتی برای سرآغاز و سرانجام کیهان پیشنهاد شده است. الگوی کیهانشناختی که امروزه مورد پذیرش اکثریت جامعه علمی است به مدل مهبانگ مشهور است. طبق این نظریه که مقبولترین نظریه در پیدایش جهان است، همه ماده و انرژی که هماکنون در جهان وجود دارد زمانی در گوی کوچک بینهایت سوزان ولی فوقالعاده چگال متمرکز بوده است. این آتشگوی کوچک حدود 15 میلیارد سال قبل منفجر شد و همه مواد در فضا پخش شدند. با گذشت زمان این گسترش و پراکندگی ادامه یافت. تراکم تودههایی از این مواد در نواحی مختلف باعث بوجود آمدن ستارگان و کهکشانها در فضا شد، ولی گسترش همچنان ادامه دارد.
2-1- انرژی تاریک
داستان انرژی تاریک از سال 1998 آغاز شد. در آن زمان دانشمندان دریافتند که بسیاری از کهکشانهای دور دست با سرعتی بسیار بیشتر از آنچه که محاسبات موجود پیش بینی کردهاند، از یکدیگر دور میشوند. تا قبل از این، کیهانشناسان همگی فکر میکردند که از سرعت گسترش به دلیل وجود گرانش بین کهکشانها، کاسته شده است. به عبارت دیگر محاسبات دقیقا نشان دهنده آن بود که سرعت انبساط جهان لحظه به لحظه در حال افزایش است و از سرعت این انبساط کاسته نمیشود. ستاره شناسان به این نتیجه دست یافتهاند که افزایش سرعت گسترش کائنات وابسته به عاملی است که بر خلاف گرانش عمل میکند. این عامل به دلیل ماهیت ناشناختهاش انرژی تاریک نام گرفت. این عامل حدود 70% ماده و انرژی موجود در جهان را شامل میشود.
3-1- ماده تاریک
در سال 1934 فریتس تسویکی منجم امریکایی سوئیسی تبار با تحلیل داده های رصدی مربوط به مجموعههای کهکشانی به این نتیجه رسیدند که ماده موجود در این مجموعه در حدود 10 برابر ماده مرئی آن ها است و فقط این ماده مرئی قابل روئت است. تحلیل تسویکی بر پایه اندازه گیری سرعت کهکشانهای منفرد مجموعه بود. اگر ماده نامرئی وجود نمیداشت تا کنون اکثر این مجموعه های کهکشانی از هم میپاشیدند. در آغاز این ماده را “ماده گم شده” نامیدند. اما اصطلاح درستی نبود، چیزی گم نشده بود، بلکه وجود داشت ولی ما نمیتوانستیم آن را ببینیم. از این رو اصطلاح ماده تاریک[1] متداول شد. از این پس یک سوال اساسی مطرح شد: ماده تاریک چیست؟
4-1- تابش زمینه ریز موج کیهانی
مدل پیشنهادی برای جهان اولیه به عنوان تركیبی از ماده نسبیتی وتابش الكترومغناطیسی در حال تعادل برای اولین بار توسط گاموف[1] فیزیکدان روسی و همکارانش در سال 1945 برای توصیف سنتز هستهای ارائه شد [3]. گاموف و همكارانش از طریق ذرهزائی در عالم اولیه حساب کردند که امروزه دمای تابش زمینه باید حدود 25 درجه کلوین یعنی 25 درجه بالای صفر مطلق باشد. در آن زمان کسی این
کار نظری را جدی نگرفت. در سال 1965، دیکی[2] فزیکدان مشهور از دانشگاه پرینتستون و همکارانش این مسئله را دوباره بررسی کردند و به دمایی کمتر از دمایی که گاموف محاسبه کرده بود رسیدند. در همان سال در آزمایشگاه بل، دو نفر به نامهای پنزیاس[3] و ویلسون[4] به طور تصادفی همهمهایی را که در تمام جهات مزاحم امواج بود کشف کردند [4]. دیکی و همکارانش به سرعت متوجه شدند که این همان تابشی است که آنها کشف کردند. ماهوارهCOBE در چند سال گذشته تحقیق نهایی را در مورد همخوانی تابش رصدی با محاسبات نظری انجام داده و دمای 7/2 درجه کلوین را اندازه گرفته است. تابش پس زمینه كیهانی ابتدا به شدت گرم بوده و به خاطر انبساط جهان دارای انتقال به سرخ شده و به دمای كنونی رسیده است. مشاهدات هاکی از آن است که شدت CMB از منحنی تابش حرارتی جسم سیاه با ناهمسانگردی[5] به اندازه تبعیت میکند.
5-1- اصول نسبیت عام
1-5-1- اصل هم ارزی
اساس نسبیت عام یک برداشت ساده از طبیعت است. آسانسوری را تصور کنید که وزنه تعادلش پاره شده است و آزادانه سقوط میکند. شخصی که در این آسانسور است احساس بی وزنی میکند، یعنی اگر روی ترازو ایستاده باشد عقربه ترازو صفر را نشان خواهد داد. پس نیروی گرانش چه شده است؟ قطعا از بین نرفته است! هر شیئی را که در این آسانسور رها کنید، در همان محل اولیه خود میایستد. پس اگر دسترسی به داخل آسانسور نداشته باشید خواهید گفت که هیچ نیرویی بر اشیاء داخل آسانسور وارد نمیشود و چون میدانیم که نیروی گرانش به سمت پایین وارد میشود، باید نتیجه بگیریم که نیروی دیگری برابر اما در خلاف جهت گرانش بر اشیاء وارد میشود که گرانش را خنثی میکند. این نیرو ناشی از وجود شتاب برابر، یعنی سقوط آزاد، به سمت پایین است، که نیرویی برابر گرانش اما به سمت بالا بر اشیاء وارد میکند. پس گرانش هم ارز است با شتاب. انیشتین این واقعیت را اصل هم ارزی[1] نامید. این اصل مبنای فرمولبندی وی از برهمکنش گرانشی شد.
اصل همارزی و مثال فوق تنها زمانی درست است كه جرم لختی (جرمی كه طبق قانون دوم نیوتن مشخص میكند كه شما در اثر یک نیرو چقد شتاب میگیرید) و جرم گرانشی (جرمی كه طبق قانون گرانی نیوتن مشخص میكند كه شما چقدر نیروی گرانشی احساس میكنید)، یكسان باشند. اگر این دو جرم برابر باشند، همه اجسام در میدان گرانشی، مستقل از اینكه جرم آنها چقدر باشد، با یک آهنگ میافتند. اگر این اصل حقیقت نداشت، بعضی از اجسام تحت تاثیر گرانش، سریعتر میافتادند. در این صورت شما میتوانستید كشش گرانش را از شتاب یكنواخت كه در آن همه چیز با یک آهنگ میافتد، تشخیص دهید [5].
این نظریه پیامدهای مهمی دارد. با حذف نیرو، و وارد کردن مفهوم میدان، نظریه گرانش به یک نظریه میدان تبدیل میشود مانند الکترومغناطیس.
2-5-1- اصل ماخ
ارنست ماخ، فیزیكدان و فیلسوف اتریشی در اثر خود به نام علم مكانیك[1] كوشش نمود تا نظریه نیوتنی را با نظریه جدیدی جایگزین كند كه فاقد جنبههای مطلقنگری باشد. به اعتقاد او یک نظریه نباید حاوی هیچ ساختار مطلقی باشد. نظیر سایر نسبی گرایان از دیدگاه ماخ فضا مفهومی انتزاعی از موقعیت ذرات نسبت به یكدیگر است. به عبارت دیگر قرار گرفتن ذرات در كنار هم است كه فاصله و فضا را تعریف میكند. انیشتین[2] از جمله معاصرین ماخ است كه شدیدا تحت تأثیر افكار و آراء وی امیدوار به یافتن این نیروهای ماخی بوده و نظریه نسبیتی گرانش خود را در راستای رسیدن به نظریهای كه تأمین كننده نظرات ماخ باشد فرموله نمود.
اصل ماخ[3]، اساسیترین اصل نسبت عام به صورتهای مختلفی تعبیر میشود. قویترین صورت این اصل این است که ماده هندسه را تعیین میکند و عدم وجود آن به معنای عدم وجود هندسه است. نسبیت عام با این صورت اصل ماخ سازگار نیست. زیرا اگر ماده وجود نداشته باشد، معادلات نسبیت عام دارای حل هستند و هندسههای مختلفی را بیان میکنند.
صورتی از اصل ماخ که با نسبیت عام سازگاری ندارد و نزدیکترین صورت به بیان ماخ است اینگونه است که: یک جسم در فضای کاملا تهی، هیچ خاصیت هندسی به خود نمیگیرد اما صورتی از اصل ماخ که نسبیت عام با آن سازگار است عبارت است از :
توزیع ماده چگونگی هندسه را تعیین میکند. ماده تعیین میکند که فضا چگونه خمیده شود [6].
[1]the Science of Mechanics
[2]Albert Einstein
[3]Mach’sprinciple
[1] Principle of Equivalence
[1] Gamow
[2]Dick
[3]Arno Penzias
[4] Robert Wilson
[5] anisotropy
[1] Dark Matter (DM)
[1]Cosmological principle
[2]Homogeneous
[3]Isotropic
[1] Super Nova Ia
[2] Wilkinson Microwave Anisotropy Probe
برای شرح خواص و حالت نوكلئونها به تابع موج سیستم نیاز داریم. این كار برای هستههای ساده امكانپذیر میباشد، در حالی كه برای هستههای بزرگ بدست آوردن تابع موج كلی حتی اگر امكانپذیر هم باشد بسیار پیچیدهتر از آن است كه مورد استفاده قرار گیرد. مدل ها قیاس بین هسته و سیستمهای بسیار ساده فیزیكی میباشند كه از طریق آنها میتوان به بررسی مسایل هستهای پرداخت]1[.
در طی چندین سال و با استدلالهای بیشمار مدلهای مختلفی برای بررسی و مطالعه ساختار هسته توسط فیزیكدانان نظری معرفی شده است، اما از آنجایی كه مدلهای مختلف هستهای در توصیف كامل خواص هسته ناموفق بودهاند. امكان پیشنهاد مدلی واحد برای مطالعه ساختار هسته از بین رفته است.
مدل شبكهای FCC[1] در سال 1937 توسط ویگنر[2] مدلسازی شده است]2.[ از آنجایی كه این مدل توانایی بازتولید خواص مدلهای ذره مستقل[3]، قطره مایع[4] و خوشهای[5] را دارا میباشد. ادامه این فصل به معرفی این مدلها اختصاص یافته است. همچنین در فصل دوم به طور كامل مدل شبكهای FCC را معرفی كرده ایم. معیار سنجش هر مدل شرح كامل خواص هستهای و توافق مناسب با دادههای تجربی میباشد، بنابراین در فصل سوم خواص هسته را از طریق این مدل مطالعه نموده ایم. هدف اصلی معرفی این مدل ایجاد هسته از طریق مدل شبكهای FCC و بررسی كارآمد بودن این مدل در برهمكنش یونهای سنگین می باشد. در نتیجه، بعد معرفی سایر مدلها نظیر مدل دابل-فولدینگ[6] و پتانسیل باس[7] برای محاسبه پتانسیل هستهای با بهره گرفتن از نیروی برهمكنش نوكلئون- نوكلئون M3Y-Paris و توزیع نوكلئونها از طریق این مدل پتانسیل هستهای را محاسبه كردهایم. بنابراین فصل چهارم این تحقیق به بررسی محاسبه پتانسیل هستهای و سطح مقطع همجوشی واكنشهای ، و نتیجهگیری اختصاص یافته است.
2-1- معرفی مدل های هسته ای
از جمله مدلهای متداول برای مطالعه ساختار هسته مدلهای ذره مستقل و مدل دستهجمعی[1] میباشد.
مدل ذره مستقل: در مدل ذره مستقل ذرات در پائینترین مرتبه صورت مستقل در یک پتانسیل مشترك حركت میكنند. مانند مدل لایهای[2].
مدل دسته جمعی: در مدل دستهجمعی یا برهمكنش قوی، به علت برهمكنشهای كوتاهبرد و قویبین نوكلئونها، نوكلئونها قویاً به یكدیگر جفت میشوند. مانند مدل قطره مایع]3[.
1-2-1- مدل قطره مایع
از جمله مدلهای اولیه برای مطالعه ساختار هسته مدل قطره مایع میباشد كه توسط بور[1] وفون وایكسر[2] از روی قطرههای مایع پیشنهاد شده است. در این مدل هسته بصورت قطرات مایع باردار تراكمناپذیر با چگالی زیاد درنظر گرفته میشود كه همچون مولكولها در یک قطره مایع دائماً در حال حركت كاتورهای میباشند و هسته تمامیت خود را با نیروهای مشابه كشش سطحی قطره مایع حفظ میكند. این مدل برای بیان روند تغییر انرژی بستگی نسبت به عدد اتمی و واكنش هستهای مفید میباشد.
مدل قطره مایع برای این سوال كه چرا بعضی از نوكلئیدها مانند با نوترونهای كند شكافته میشوند و برخی دیگر نوترونهای سریع پاسخ سادهای دارد كه علت آن را انرژی فعالسازی بیان میكند، یعنی حداقل میزان انرژی كه هسته بتواند به قدر كافی تغییر شكل دهد. تغییر شكلی كه نیروهای رانش الكتریكی بتواند بر نیروهای جاذبه الكتریكی غلبه كند. این مقدار انرژی فعالسازی را میتوان به یاری تئوری ریاضی مدل قطره مایع محاسبه نمود كه رابطه تعمیم یافته و كلی انرژی بستگی را میدهد. یكی از مهمترین واقعیتهای موجود در هسته ثابت بودن تقریبی چگالی هسته است. حجم یک هسته با عدد A (تعداد نوكلئون) متناسب میباشد و این واقعیتی است كه در مورد مایعات
نیز صادق میباشد.
در شکل (1-1) متوسط انرژی بستگی بر حسب نوکلئون رسم شده است. نظم و ثبات انرژی بستگی به ازای هر نوکلئون بصورت تابعی از عدد جرمی A و ثابت بودن چگالی هسته ای منجر به ارائه فرمول نیمه تجربی جرم و پیشنهاد مدل قطره مایع توسط وایسکر شد.
نخستین واقعیت لازم برای رسیدن به یک فرمول برای جرم، ثابت بودن تقریبی انرژی بستگی به ازای هر نوکلئون برای 50 است، بنابراین انرژی بستگی متوسط برای یک هسته نامتناهی بدون سطح باید دارای مقدار ثابتی مثل باشد، که همان انرژی بستگی ماده هسته ای است .از آنجایی که تعداد A ذره در هسته وجود دارد سهم حجمی آن ، در انرژی بستگی به صورت زیر می باشد. .
نوکلئون های سطحی پیوندهای کمتری دارند و اندازه متناهی یک هسته حقیقی منجر به یک جمله به صورت رابطه زیر در انرژی بستگی می گرددکه متناسب با سطح هسته بوده و انرژی بستگی را کاهش می دهد،
(1-2) .
انرژی کولنی ناشی از نیروی دافعه الکتریکی است که بین هر دو پروتون وجود دارد. برای سادگی فرض شده است، پروتون ها به صورت یکنواخت در سراسر کره ای به شعاع توزیع شده اند، با بهره گرفتن از معادله انرژی کولنی، ، سهم کولنی در انرژی بستگی به صورت زیر خواهد شد. از آنجایی که این انرژی باعث کاهش انرژی بستگی هسته ای می شود با علامت منفی در رابطه زیر قرار داده می شود،
انرژی تقارنی از اصل طرد ناشی می شود، زیرا این اصل برای آنکه هسته ای بخواهد نوعی از نوکلئون را بیشتر از نوع دیگر داشته باشد انرژی بیشتری مطالبه می کند، که عبارت تقریبی آن به صورت زیر است،
(1-4) .
با ترکیب نمودن روابط فوق انرژی بستگی به ازای هر نوکلئون رابطه ای که وایسکر پیشنهاد کرد به صورت زیر خواهد شد]4[،
(1-5)
مقادیر ثابت در این روابط با برارزش انرژیهای بستگی مشاهده شده در آزمایشها تعیین میشود.
2-2-1- مدل پوسته ای
در مدل پوستهای فرض بر این است كه پوستهها با پروتونها و نوترونهایی كه انرژیشان بترتیب افزایش مییابد پر میشود. علی رغم جاذبه شدید بین نوكلئونها كه انرژی بستگی را ایجاد میكند حركت نوكلئونها مستقل از یكدیگر بوده و این تناقض ظاهری توسط اثرهای ناشی از طرد پائولی از بین میرود زیرا این اصل بشدت امكان برخورد نوكلئونها را محدود میسازد.
خواص هستهای متعددی نشان داده است كه برای مقادیر خاصی از نوترون و پروتون رفتاری ناپیوسته از هسته بروز میكند كه منجر به پیشنهاد ساختار پوستهای برای هستهها شد. ناپیوستگیها تماماً وقتی یافت میشود كه نوترون یا پروتون مقادیر 2، 8، 20، 28، 50، 82، 126 را داشته باشند. این مقادیر را اعداد جادویی گویند. مطالعات تجربی صورت گرفته بر روی هستههای با مقادیر N و Z فوق نشان داده است كه این هستهها پایدارترند و انرژی بستگیشان نسبت به هستههای كاملاً نظیرشان بیشتر میباشد.
برخی شواهد تجربی وجود ساختار پوستهای هسته را میتوان از فراوانی نسبی ویژه هستههای زوج- زوج مختلف در شكل (1-2) كه به صورت تابعی از عدد اتمی A برای 50 رسم شده است بدست آورد. ویژه هستههایی كه برای آنها N مساوی 50 و 82 و 126 است، سه قله مشخص تشكیل میدهند. در حال حاضر این اعداد توسط مدل پوستهای بخوبی توضیح داده شدهاند.
مدل پوستهای بر اساس مكانیک كوانتومی ساخته و پرداخته شده است و در موارد زیر از جمله بررسی خواص نوكلئیدهایی كه موجب گسیل ذرات آلفا، بتا و فوتونهای گاما میشوند و بیان چگونگی میدان الكتریكی و مغناطیسی اطراف هستهها موفق بوده است ولی این مدل برای توضیح عمل شكاف كمكی نمیكند]1،3[.
3 . N. Bohr
4 . F. Von Weizsacker
1 . Collective
2 . Shell Model
1 . Face-Center-Cubic
2 . Wigner
3 . Independent Particle Model (IPM)
4 . Liquid Drop Model (LDM)
5 . Cluster Model
6 . Double Folding
7 . VBass