وبلاگ

توضیح وبلاگ من

دانلود پایان نامه ارشد : بررسی بیان برخی miRNA در رده سلولی مشتق از سرطان رتینوبلاستوما

و بیان مسئله. 1

 

1‌.1‌رتینوبلاستوما 2

 

1‌.1‌.1‌ اپیدمیولوژی.. 2

 

1‌.1‌.2‌ پاتوژنز. 3

 

1‌.1‌.3‌ ویژگی های کلینیکی وتشخیصی.. 5

 

1‌.2‌ تاریخچه خانوادگی.. 5

 

1‌.3‌ تشخیص…. 5

 

1‌.4‌ ارزیابی قبل از درمان.. 6

 

1‌.5‌ درمان.. 6

 

1‌.6‌ مکانیسم مولکولی سرطان.. 9

 

1‌.6‌.1‌ مسیر پیام رسانی TGFβ 9

 

1‌.6‌.1‌.1‌ خانواده لیگاند های TGFβ.. 11

 

1‌.6‌.1‌.2‌ رسپتور نوع 1و2 ( TGFβRI,II) 11

 

1‌.6‌.1‌.3‌ فسفریلاسیون SMAD… 12

 

1‌.6‌.2‌ تنظیم پیام رسانی TGFβ. 12

 

1‌.6‌.3‌ دخالت پیام رسانیTGFβ  در سرطان.. 13

 

1‌.6‌.4‌ ژنهای همئوباکس(Homeobox) 14

 

1‌.6‌.4‌.1‌ ساختار ژن های همئوباکس….. 14

 

1‌.7‌     نقش ژن های همئوباکس (Homeobox) در ایجاد سرطان.. 17

 

1‌.8‌ miRNA 18

 

1‌.8‌.1‌ بیوژنز miRNA ها و نحوه مهار ترجمه. 19

 

1‌.9‌ miRNA و سرطان.. 20

 

1‌.10‌ miRNA ابزاری برای شناسایی و تشخیص سرطان.. 21

 

1‌.11‌ miRNA ودرمان سرطان.. 22

 

1‌.12‌   بیان مسئله و اهمیت پژوهش…. 23

 

1‌.13‌   اهداف پژوهش…. 24

 

1‌.13‌.1‌  هدف اصلی.. 24

 

1‌.13‌.2‌  اهداف ویژه 24

 

1‌.13‌.3‌  هدف کاربردی.. 25

 

فصل 2: بررسی متون.. 26

 

2‌.1‌ بررسی متون مرتبط با موضوع. 27

 

فصل 3:مواد و روش ها 32

 

3‌.1‌ مواد شیمیایی و آنزیم ها 33

 

3‌.1‌.1‌ پلاسمیدوسویه باکتری.. 35

 

3‌.1‌.1‌.1‌ خصوصیات پلاسمید.. 36

 

3‌.1‌.1‌.2‌ خصوصیات میزبان.. 37

 

3‌.2‌ روش ها 37

 

3‌.2‌.1‌ کشت باکتری.. 37

 

3‌.2‌.1‌.1‌ مواد و وسایل مورد نیاز برای کشت باکتری… 37

 

3‌.2‌.1‌.2‌ طرز تهیه محیط کشت LB مایع.. 38

 

3‌.2‌.1‌.3‌ گلیسرول استاک…. 38

 

3‌.2‌.2‌ روش انجام   miniprepاستخراج DNA  پلاسمیدی از باکتری.. 39

 

3‌.2‌.2‌.1‌ بررسی کمی وکیفی DNA پلاسمیدی… 41

 

3‌.2‌.3‌ هضم آنزیمی پلاسمید های استخراج شده 45

 

3‌.2‌.4‌ کشت سلولی.. 46

 

3‌.2‌.4‌.1‌ محیط کشت…. 46

 

3‌.2‌.4‌.2‌ سرم جنینی گاوFBS.. 47

 

3‌.2‌.4‌.3‌ تهیه محیط انجاد از سلولها 47

 

3‌.2‌.4‌.4‌ خصوصیات سلولهای مورد استفاده شده در این پایان نامه. 48

 

3‌.2‌.5‌ تعیین منحنی کشندگی انتی بیوتیک G418. 48

 

3‌.2‌.6‌ منطبق سازی سلولها 48

 

3‌.2‌.7‌ ترانسفکشن سلولهای Y79  با وکتور پلاسمیدی نوترکیب pEGFP-TGIF2LX.. 49

 

3‌.2‌.8‌ انتخاب سلولهای مثبت… 50

 

3‌.2‌.9‌ بررسی بیان ژن TGIF2LX در سلول های ترانسفکت شده در سطح mRNA بوسیله Realtime RT-PCR                            51

 

3‌.2‌.9‌.1‌ محافظت از RNA… 52

 

3‌.2‌.9‌.2‌ استخراج RNA… 55

 

3‌.2‌.9‌.3‌ تیمار نمونه RNA باآنزیم دئوکسی ریبونوکلئاز  I. 59

 

3‌.2‌.9‌.4‌ سنتز DNA مکمل(cDNA) 60

 

3‌.2‌.9‌.5‌ PCR(Polymerase chain reaction) واکنش زنجیره ای پلیمراز. 64

 

3‌.2‌.9‌.6‌ واکنش Realtime PCR… 68

 

3‌.2‌.9‌.7‌ تجزیه و تحلیل داده های حاصل از واکنش Realtime RT-PCR… 77

 

3‌.2‌.10‌  بررسی بیان eGFP-TGIF2LX در سطح پروتئین بوسیله Western blot 78

 

3‌.2‌.10‌.1‌ الکتروفورز عمودی SDS-PAGE.. 78

 

3‌.2‌.10‌.2‌ رنگ آمیزی SDS-PAGE.. 84

 

3‌.2‌.10‌.3‌ وسترن بلاتینگ….. 86

 

3‌.2‌.11‌  بررسی میزان تکثیر سلولی بوسیله تجزیه نمک تترازولیوم. 90

 

3‌.2‌.11‌.1‌ بررسی اثر بیان افزایشی TGIF2LX سلولهای Y79 در مقایسه با کنترل.. 90

 

3‌.2‌.11‌.2‌ بررسی اثر متقابل SD-208 و بیان افزایشی TGIF2LX سلولهای Y79 در مقایسه با کنترل.. 91

 

3‌.2‌.11‌.3‌ پروتکل شمارش سلول.. 92

 

3‌.2‌.12‌  مطالعه بیان اثر داروی SD-208 بر روی بیانTGIF2LX, miRNA Let7g,18a,34a,22,20  در سلولهای ترانسفکت شده Y79 در مقایسه با نمونه های کنترل به وسیله Real time RT-PCR.. 92

 

فصل 4: نتایج و یافته ها 96

 

4‌.1‌Mini prep   و هضم DNA  پلاسمیدی جهت تایید وکتور نوترکیب… 97

 

4‌.2‌ بررسی بیانTGIF2LX  در سطح mRNA… 98

 

4‌.2‌.1‌ نتیجه بررسی کیفی و کمی RNA.. 98

 

4‌.2‌.2‌ بررسی کیفی cDNA.. 99

 

4‌.3‌ بررسی بیان TGIF2LX  در سلولهای ترانسفکت شده 101

 

4‌.3‌.1‌ مطالعه بیان TGIF2LX  در سلولهای ترانسفکت شده Y79  در مقایسه با نمونه های کنترل بوسیله میکروسکوپ                                   101

 

4‌.3‌.2‌ تایید بیان واضح ژن GFP-TGIF2LX توسط Realtime RT- PCR.. 102

 

4‌.3‌.3‌ مطالعه بیان ژن TGIF2LX در سلول های ترانسفکت شده با وکتور حاوی GFP-TGIF2LX در سطح پروتئین بوسیله Western Blot 104

 

4‌.3‌.4‌ مطالعه بیان اثر داروی SD-208 بر روی بیانTGIF2LX  در سلولهای ترانسفکت شده Y79 در مقایسه با نمونه های کنترل                    105

 

4‌.4‌ بررسی اثر بیان افزایشی TGIF2LX بر روی سلولهای Y79. 105

 

4‌.4‌.1‌ نتایج ازمایش (MTT)Microculturetetrazolium Test 105

 

4‌.4‌.2‌ بررسی اثر متقابل SD-208 و بیان افزایشی TGIF2LX بر روی سلولهای Y79 در مقایسه با کنترل.. 106

 

4‌.5‌ بررسی بیان miRNA Let7g,18a,34a.22,20a در سلولهای ترانسفکت شده و کنترل.. 108

 

4‌.6‌ مطالعه بیان اثر داروی SD-208 بر روی بیان miRNA Let7g,18a,34a.22,20  در سلولهای ترانسفکت شده Y79 در مقایسه با نمونه های کنترل.. 109

 

4‌.7‌ Ct در واکنش Realtime PCR.. 110

 

فصل 5: بحث، نتیجه گیری و پیشنهادها 113

 

5‌.1‌ بحث   114

 

5‌.2‌ تاثیر بیان افزایشی TGIF2lX بر روی Cellular Viability در رده سلولی Y79. 116

 

5‌.3‌ تاثیر دارویSD-208  بر روی Cellular Viability در رده سلولی Y79 بیان کننده افزایشی TGIF2LX و کنترل  117

 

5‌.4‌ اثر SD-208 بر روی بیان TGIF2LX در رده سلولی Y79 ترانسفکت شده در مقایسه با کنترل                         118

 

5‌.5‌ اثر متقابل SD-208 و TGIF2LX بر روی بیانmiRNA های مورد مطالعه. 118

 

5‌.5‌.1‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNAlet7g در رده سلولی Y79. 118

 

5‌.5‌.2‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNA18a در رده سلولی Y79. 119

 

5‌.5‌.3‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNA34a در رده سلولی Y79. 119

 

5‌.5‌.4‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNA22 در رده سلولی.. 119

 

5‌.5‌.5‌ اثر متقابل SD-208 و TGIF2LX بر روی بیان miRNA20a در رده سلولی Y79. 120

 

5‌.6‌ نتیجه گیری.. 120

 

       7.5 پیشنهاد ها ……………………….121

 

منابع و مراجع.. 122

 

پیوست ها 131

 

1‌.1‌          رتینوبلاستوما

 

رتینوبلاستوما یکی از سرطان های بدخیم چشمی شایع کودکی می­باشد که به دو فرم پراکنده (تک گیر) و ارثی(خانوادگی) وجود دارد [1]. تقریبا 4 درصد تومورهای کودکان را رتینو بلاستوما تشکیل می­دهد .این تومور شایعترین بدخیمی اولیه چشمی است که در غرب 99درصد کودکان از این سرطان نجات پیدا می­ کنند ولی بیش از 90 درصدآنها بینایی خود را از دست می­ دهند و متاسفانه در کشورهای در حال توسعه بقا کودک تقریبا 50 درصد می­باشد[2] و [3].

 

اغلب کودکان مبتلا به رتینوبلاستوما با علامت لوکوکوریا[1] (شکل ‏1‑1) که والدین آنها متوجه م­شوند مراجعه می­ کنند[4].

 

پایان نامه

 

 

 

1‌.1‌.1‌                                                                                      اپیدمیولوژی

رتینوبلاستوما تقریبا با شیوع 1 در 15000و 1 در 16600تولد زنده در امریکا و اروپای شمالی رخ میدهد [5] و [6] ودر بین سالهای 2005-2009شیوع سالیانه رتینوبلاستوما در امریکا 4.1 در هرمیلیون کودک زیر 15 سال می­باشد[5] ودر کل دنیا سالیانه 5000تا 8000 کودک مبتلا به رتینوبلاستوما می­شوند [7] به طور متوسط سن تشخیص بیماری زیر 2 سال است و تقریبا 95درصد قبل از 5 سالگی می­باشد.شیوع بیماری در بین دختر وپسر و سیاه و سفید شبیه به هم می­باشد[5].

 

تقریبا 1/4 موارد رتینوبلاستوما دو طرفه می­باشد بیماریهای دوطرفه همیشه الگوی ارثی دارند. تومور های دو طرفه زودتر در کودکان رخ می­دهد که نشان دهنده وجود موتاسیون در سلولهای زایا می­باشد. فرم ارثی رتینوبلاستوما نیازمند یک جهش ژرم لاین است که می ­تواند از هر یک از والدین یا از محیط( که منجر به یک موتاسیون ژرم لاین شود) می­باشد. بر عکس فقط 15 درصد از موارد یکطرفه ارثی هستند که اغلب چند کانونی هستند و باید از نظر جهش ژرم لاین بررسی شوند که معمولا در 2سال اول زندگی رخ می­دهد کم تر از 10 درصد بیماران رتینوبلاستومایی تاریخچه مثبت خانوادگی دارند.

 

تقریبا 60 درصد کودکان با رتینوبلاستوما الگوی یک طرفه غیر ارثی دارند.کودکان با رتینوبلاستوما غیرارثی یک موتاسیون جدید در یک سلول شبکیه دارند که منجر به تومور می­شوند [8] . ناهنجاری ژنتیک در فرم ارثی رتینوبلاستوما موجب ایجاد و پیشرفت تومور مثل استئوژنیک سارکوما وسارکومای بافت نرم(بخصوص لیومیوسارکوما)و ملانومای بدخیم میشود شیوع سرطان ثانویه بعد از تشخیص رتینوبلاستوما در فرم ارثی و غیرارثی به ترتیب 51 و 5 درصد میباشد که بیش از 60 درصد سرطان ها سارکوما می­باشد [9].

 

1‌.1‌.2‌                                                                                     پاتوژنز

 

رتینوبلاستوما معمولا بوسیله غیر فعال شدن هر دو الل ژن رتینوبلاستوما رخ می­دهد.با الگوی اتوزومی غالب این ژن در ناحیه کروموزم 13 بازوی بلند در ناحیه 14قرار دارد که کد کننده یک پروتئین هسته ای با نقش تومورساپرسوری می­باشد [10].

 

مدل 2 ضربه ای که پیشنهاد شده است دلیل متفاوت بودن ویژگی های کلینیکی موارد ارثی و غیر ارثی رتینوبلاستوما را مطرح میکند[11]. (شکل ‏1‑2)

 

 

 

 

 
شکل ‏1‑2: مدل 2  ضربه ای رتینوبلاستوما

در مدل ارثی در ژن RB1 یک موتاسیون در کل سلول ها وجود دارد و ضربه دوم در مراحل بعدی تکامل رخ می­دهد که این افراد مستعد رتینوبلاستومای دوطرفه و چندکانونی می­باشند.ضربه دوم می ­تواند رخ دهد ویا توسط تغییرات اپی­ژنتیک خاموش شود.

 

در مدل رتینوبلاستومای غیر ارثی دو جهش در یک الل به صورت خودبه خودی در یک سلول سوماتیک شبکیه رخ میدهد که معمولا منجر به مدل کلینیکی تومور یه کانونی ویه طرفه رتینوبلاستوما می­ شود [12].

 

رتینوبلاستوما اگر درمان نشود رشد میکند و جای چشم را اشغال می­ کند وکره چشم را از بین میبرد و ممکن است طی 4 ماه بعد از تشخیص به مغز متاستاز بدهد و مرگ طی یک سال رخ بدهد.اغلب راه های متاستاز تومور به وسیله اپتیک نرو[3] به سیستم عصب مرکزی و یا گسترش از طریق مشیمیه به اربیت میباشد [13].

 

1‌.1‌.3‌                                                                                    ویژگی های کلینیکی وتشخیصی

 

لوکوکوریا شایعترین علامت در کودکان رتینوبلاستومایی میباشد اگر چه علایم دیگر نیز وجود دارد و لوکوکوریا برای تشخیص ضروری نیست. شایعترین علایم لوکوکوریا (54درصد) و استرابیسم (19درصد) کاهش دید (4درصد) عفونت چشمی (5درصد) و تاریخچه خانوادگی مثبت (5درصد) میباشد و موارد دیگر عنبیه هتروکروم وخونریزی ویتره و هایفما بدون ضربه و گلوکوم و سلولیت اربیت و پروپتوزیس و درد چشم و تب می­باشد [14].

 

1‌.2‌         تاریخچه خانوادگی

 

میزان خطر در میان نسل فرد بستگی به تاریخچه خانوادگی رتینوبلاستوما ویا چگونگی تومور در فرد نشانه دارد(به طور مثال یه طرفه یا دو طرفه یه کانونه یا دو کانونه).میزان خطر از 6 درصد (اگر پروباند بیماری یه طرفه و یه کانونه داشته باشد یا با تاریخچه خانوادگی منفی باشد)تا 50 درصد می­باشد(اگر پروباند دارای موتاسیون ژرم لاین باشد یا حدس زده شود که موتاسیون دارد)[15].

 

 

 

کودک با ریسک بالا ی رتینوبلاستوما باید سریع بعد از به دنیا آمدن توسط چشم پزشک ارزیابی شود. غربالگری باید هر 3-4ماه تا 3-4 سالگی  وهر6 ماه تا 5-6 سالگی صورت گیرد [16].

 

1‌.3‌        تشخیص

 

تشخیص رتینوبلاستوما از طریق مردمک دیلاته شده وبا دستگاه افتالموسکوپی ایندایرکت تحت بیهوشی صورت می­گیرد.یافته ها به صورت توده شبکیه گچی خاکستری رنگ و تردشونده یافت می­ شود. پاتولوژی برای ثابت کردن تشخیص لازم می­باشد.تست های کمکی اگرچه همیشه ضروری نمی­باشندولی ممکن است برای ثابت کردن تشخیص انجام شود.سونوگرافی چشمی یا مغز نگاری کامپوتری سی تی اسکن یک توموده ی جامد با ویژگی های کلسیفیکاسیون را نشان دهد. تصویر رزونانس مغناطیسی[4] نیز می ­تواند وجود توده داخل چشمی را ثابت کند بویژه در مواردی که تشخیص بیماری با بیماری کت سخت می­باشد.یافته های فوندوسکوپی می ­تواند رتینوبلاستوما را از بیماری کت و از بیماری پارگی رتین اگزوداتیو متمایز کند ولی کلسیفیکاسیون را که عامل مهم در تشخیص سایز تومور و درگیری عصب چشمی و وجود آسیب درون جمجمه ای می­باشد را نمی ­تواند نشان دهد [14].

 

1‌.4‌        ارزیابی قبل از درمان

 

تست های غیر ژنتیکی: ارزیابی کودکان با رتینوبلاستوما کاملا منحصر به فرد جهت انتخاب مدل درمانی می­باشد(مثلاتعداد پایه ای سلولها وبیوشیمی خون جهت شروع شیمی درمانی).برای بیماران با تومور های کوچک (به جز در موارد خانوادگی)بررسی کامل و معاینه زیر بیهوشی و اولتراسونوگرافی و MRIسر و چشم معمولا کفایت می­ کند[17]. در مراحل اولیه تشخیص وجود موارد متاستاز نادر می­باشد(ازمایش مغز استخوان و آب نخاع و اسکن استخوان)ومعمولا این موارد ازمایش نمی­ شود [18]. اما اگر مدارکی دال بر وجود تومور در بیرون از کره چشم وجود دارد(تهاجم به عصب چشم یا درگیری مشیمیه) ارزیابی های کامل متاستاز باید انجام شود.علایم ونشانه های متاستاز شامل بی اشتهایی یا کاهش وزن وتهوع و سر درد و آسیب عصبی ووجود توده اربیت یا توده نرم بافتی می­باشد[19].

 

تست های ژنتیک مولکولی: برای همه بیماران تستهای ژنتیکی پیشنهاد می­ شود. بیماران با موتاسیون ژرم لاین باید به متخصص ژنتیک ارجاع داده شوندتا والدین و فرزندان تست شوند .تست مولکولی گلبول های سفید خون محیطی در 90-95 درصد موارد موتاسیون های ژرم لاین را تشخیص می­دهد در موارد یه طرفه تست مولکولی باید روی سلول تومور صورت بگیرد تا موتاسیون خاصRB1  تشخیص داده شود [20].

 

1‌.5‌        درمان

 

گزینه های گوناگونی برای درمان کودکان با رتینوبلاستوما در دسترس می­باشد.انتخاب درمان وابسته به پیش آگهی بینایی وسایز و مکان تومور حضور یا عدم حضور توده در ویتره یا ساب رتینال و سن بیمار دارد.

 

تخلیه چشم  : معمولا برای تومورهای بزرگ که بیش از 50درصد کره چشم را اشغال کرده است و چشم دردناک ونابینا و گسترش تومور به عصب چشم صورت گرفته است انجام می­گیرد که کودک تحت بیهوشی عمومی قرار گرفته و چشم با ماهیچه های اطراف آن برداشته می­ شود .بعد از انوکلئویشن باید شیمی درمانی یا براکیوتراپی در بیماران برای جلوگیری از متاستاز لحاظ شود[21] و [22]).

 

هیدرکسی اپاتیت که بعد از تخلیه چشم برای ساخته شدن عروق به کار میرود و پروتز بعد از سه ماه که بیمار بهبود پیدا میکند توسط چشم پزشک جاگذاری میشود.کودکان بعد از تخلیه چشم باید از لحاظ عود مجدد تا 2 سال بعد جراحی پیگیری گردد. در مطالعه 1674 بیمار تحت جراحی از سال1914تا 2006 مورد بررسی قرار گرفتند. شیوع عود مجدد تومور در 24 ماه بررسی شد که  عود97درصدی بیماران در 24 ماه اول بودند وبیماران 85 درصد با عود اربیت متاستازثانویه داشتند. که75 درصد بیماران با عود اربیت به علت متاستاز فوت کردند [23].

 

رادیوتراپی خارجی: سلول های سرطانی به علت رشد سریعی که دارند اگر در معرض اشعه قرار بگیرند از بین میروند.یکی از راه های درمانی رتینوبلاستوما به خصوص در تومورهای دوطرفه بزرگ یا گسترش داده شده به ویتره یا تومور بزرگ نزدیک عصب بینایی یا مرکز دید فووآ یا همچنین برای تومورهای بزرگی که نمی­توان با کرایو تراپی فتوکواگولیشن درمان کرد می­باشد و از موارد راه­های درمانی می­باشد که در حال حاضر به ندرت استفاده می­ شود [24].

دانلود پایان نامه ارشد : بررسی پخش مواد رادیواکتیو از یک راکتور هسته­ ای فرضی MW 5

مواد پرتوزای طبیعی از بدو تشکیل کره زمین در آن وجود داشته است. ولی با توسعه فن­آوری و بهره ­برداری انسان از آن، منابع پرتوزای ساخت دست بشر، در محیط زیست رو به افزایش گذاشته و مواد پرتوزای مصنوعی که در نتیجه­ فعالیت­های بشری در رشته­های گوناگون هسته ای        می باشد، به محیط زیست وارد شده، و به نحوی جزء آلاینده های غذایی، آشامیدنی و هوای تنفس موجودات زنده و به ویژه انسان محسوب می­گردند.

 

به منظور حفاظت رادیولوژیکی محیط زیست و به تبع آن حفاظت رادیولوژیکی موجودات زنده به ویژه انسان، شناسایی توام اکوسیستم (مناطق خاص زندگی که در آن گیاهان و جانواران محیط اطراف خود را تقسیم می­ کنند) و منابع پرتوزا و نحوه عملکرد، جابجایی، توزیع و رفتار هسته های پرتوزا در اجزای اکوسیستم، ضروری است.

 

به طور کلی هدف از حفاظت رادیولوژیکی، پایش انسان و محیط زیست در برابر عملکرد مواد پرتوزای طبیعی و مصنوعی موجود در محیط می­باشد و منظور از تحقیقات در این زمینه،        پیش ­بینی مسیرهای راه­یابی مواد پرتوزا به محیط زیست و تخمین میزان دز دریافتی توسط مردم در مناطق مختلف است تا بتوان میزان خطر ناشی از پرتوگیری­های داخلی و خارجی را تعیین کرد.

 

بنابراین مطالعات و بررسی مداوم، جهت تعیین عملکرد مواد پرتوزا در محیط زیست مورد نیاز می باشد، تا نتیجه مطلوب و اطلاعات مورد نظر حاصل شود. بدین ترتیب حفاظت رادیولوژیکی محیط زیست به عنوان یک ضرورت اجتناب­ناپذیر جهت تنظیم اکوسیستم و جلوگیری از پرتوگیری ناخواسته مطرح می باشد.

 

یکی از این منابع پرتوزایی ساخت بشر، راکتورهای هسته­ای هستند که در خلال کار عادی، کسر کوچکی از مواد پرتوزا را از طریق هوا به محیط زیست وارد می­ کنند.

 

انرژی هسته ای در سال های اخیر به دلایل زیر تبدیل به یک منبع مهم انرژی شده است:

 

    • تقاضای رو به رشد برای توان الکتریکی

 

    • افزایش رقابت جهانی برای سوخت های فسیلی

 

    • نگرانی درباره تابش گازهای گلخانه ای و تاثیر آن روی گرمایش زمین

 

  • نیاز برای استقلال انرژی

بنابراین در عصر حاضر انرژی هسته‌ای لازمه پیشرفت و خودکفایی هر کشوری است و در این بین ایران نیز از این قائده مستثنی نیست. از این­رو، گسترش علوم و فنون هسته‌ای و بومی­سازی این فناوری، از اولویت‌های نظام جمهوری اسلامی می‌باشد. با توجه به نیاز کشور به تولید رادیوایزوتوپ‌ها و رادیوداروها جهت درمان بیماران و همچنین تولید برق، ساخت راکتورهای تحقیقاتی و نیروگاه‌های هسته‌ای در کنار راکتورهای موجود، ضروری به نظر می‌رسد. بدین منظور و در راستای سندهای چشم انداز توسعه کشور، ساخت راکتورهای هسته‌ای تا توان2000 مگا وات در دستور کار قرار گرفته است.

 

اگرچه یک نیروگاه هسته ای، یک منبع خوب انرژی است و عمدتا تهدیدی برای محیط زیست به شمار نمی آید، ولی چنان­چه حادثه ای مهم برای راکتور رخ دهد، می ­تواند منجر به یک فاجعه بشری شود. بنابراین خطر آزادسازی تصادفی مواد رادیواکتیو به محیط زیست می ­تواند پیامد مهم استفاده از نیروگاه‌های هسته ای باشد.

 

موارد متعددی از حوادث راکتورهای هسته ای وجود دارد، مانند:

 

    • چاک ریور[1] در کانادا (1952)
    • پایان نامه

    •  

 

    • آیداهو فالا[2] در آمریکا (1957)

 

    • تری مایل آیلند[3] در آمریکا (1979)

 

  • چرنوبیل در اوکراین (1986)

از بین این حوادث، حادثه چرنوبیل به طور کلی ادراک بشر را از ریسک تابشی[4] دگرگون کرد. در 26 آوریل 1986 در اوکران حادثه ای مهم رخ داد که در نتیجه­ آن یک مقدار زیادی ماده رادیواکتیو به اتمسفر آزاد شد که این مواد رادیواکتیو در شمال و جنوب اروپا و همچنین در کانادا و ایالات متحده آمریکا حس شد. تنها نیمه­ی جنوبی کره زمین آلوده نشد. این حادثه نشان داد که در صورت وقوع یک حادثه مهم و بزرگ هسته ای، نه تنها مکانی که در آن حادثه رخ داده است، بلکه اطراف آن نیز می تواند تحت تاثیر قرار گیرد.

 

 به هر حال راکتور‌های هسته ای، ذرات رادیواکتیو مایع و گازی ساطع می­ کنند و از آن جائی­که اثرات تابش­ها به طور خاص یک نگرانی مهم برای مردم و کشور است، ایمنی هسته­ای و محافظت انسان و طبیعت در برابر اشعه یونیزان موضوع مهمی است. البته قابل ذکر است که راکتورهای هسته­ای به گونه­ ای کاملا دقیق طراحی، ساخت و مانیتور می­ شوند که تا حد امکان از آزادسازی مواد رادیواکتیو جلوگیری شود.

 

راکتورهای هسته‌ای به طور معمول و یا در اثر نقص سیستم‌های ایمنی و همچنین در اثر سوانح هسته‌ای و بلایای طبیعی، رادیونوکلوئیدهایی را از طریق سیستم تهویه در محیط آزاد می­ کنند و موجب افزایش دز محیط اطراف راکتور می‌شوند. پارامترهای مختلفی در میزان توزیع و نحوه انتشار مواد رادیواکتیو خروجی از راکتورها نقش دارند؛ شکل و حالت مواد رادیواکتیو خروجی، کیفیت فیلترهای جذب و سیستم‌ تهویه، ارتفاع دودکش، سرعت باد، میزان بارندگی سالیانه منطقه، شرایط آب و هوایی محیط، ارتفاع ساختمان‌های ساکنین اطراف راکتور از آن جمله‌اند.

 

هدف در طراحی راکتورهای هسته ای، کنترل کردن واکنش های زنجیره ای و همچنین اطمینان از وجود تغییرات کم در توان خروجی و یا تغییرات مجازی که در زمان های زیاد (ده­ها ثانیه) در توان خروجی ایجاد می شوند، می باشد.

 

اگر نقصی در راکتور رخ دهد که تغییرات توان بسیار سریع باشد، یک حالت گذرا را در راکتور ایجاد می­ کند و متاسفانه راکتورها طوری طراحی می­شوند که با افزایش زمان ناشی از تغییرات توان، ممکن است قلب راکتور ذوب شده و یا حالت یکپارچه خود را از دست دهد. انتقال سریع گرما به یک خنک­کننده[5] مایع، می ­تواند موجب افزایش در فشار شود که ممکن است آسیب ساختاری شدید به راکتور (مانند حادثه چرنوبیل) را به همراه داشته باشد. بنابراین واضح است که ریسک، همواره در بهره برداری یک راکتور هسته­ای به مانند سیستم های پیچیده دیگر مثل نیروگاه­های شیمیایی و یا پالایشگاه­های نفتی، باید در نظر گرفته شود. اما آن چه راکتور هسته­ای را با دیگر نمونه های ذکر شده متفاوت می­ سازد این است که اگر نقصی در سیستم های راکتور رخ  دهد، ممکن است باعث انتشار مقادیر زیادی از مواد رادیواکتیو به محیط خارج شود و اثرات یک رویداد و یا حادثه در راکتور هسته­ای می ­تواند تا هزاران کیلومتر مربع از اطراف نیروگاه را تحت شعاع خود قرار دهد، در حالی که حوادث شیمیایی، چه در بعد مسافت و چه از نظر مدت زمان و یا دوره طولانی آلودگی، اغلب نمی­توانند با حوادث هسته­ای که در راکتور هسته ای رخ می­دهد، مقایسه شوند.

 

ملاک ICRP برای تعیین میزان تابش­های حرفه­ ای این است که ریسک متوسط به پرتوکاران نباید بیشتر از ریسک متوسط کارکنان صنایع متعارف و امن باشد. ضمن این که حداکثر دز معادل سالانه در حد 50 میلی­سیورت است، ICRP می تواند میانگین دز معادل سالانه را برابر با یک دهم حد بالا فرض کند. کارکنان نیروگاه هسته­ ای، در حدود 5/1 میلی­سیورت در سال دریافت می­ کنند که معادل ریسک سالانه ای در حدود 1 مورد در 30000 می باشد. با آمیختن تصادفات معمول و ریسک­های مربوط به اشعه، در مجموع ریسک سالانه مرگ برای کار در نیروگاه، برابر با 1 در 1200 می شود.

 

موارد ایمنی مربوط به حفاظت از پرتوگیری کارکنایی که در معرض مواد و پسماندهای رادیواکتیو قرار دارند، باید با دقت، کنترل و مانیتورینگ شود. بنا به توصیه 26ICRP در خصوص پرتوگیری افراد، تابش تک تک افراد جامعه و دز دسته جمعی مردم ناشی از پسماندهای رادیواکتیو باید به حدی پایین باشد که از نظر منطقی قابل دست­یابی گردد و نیز با توجه به ملاحضات اقتصادی و اجتماعی کاهش داده شود.

 

در سایت یک راکتور هسته­ای، نظارت و کنترل مقادیر دز مجاز در قسمت ­های مختلف توسط بخش فیزیک بهداشت هم در داخل سایت و هم در خارج سایت انجام می­ شود، تا اطمینان حاصل شود که عملیات نیروگاه از نظر مسائل حفاظتی مربوط به پرسنل داخل سایت و افراد جامعه در بیرون سایت به صورت امن و بی­خطر انجام می شود.

 

بدین منظور تحلیل حوادث احتمالی که منجر به خارج شدن مواد رادیواکتیو به محیط می­شوند، جهت به دست آوردن نحوه پخش و توزیع مواد رادیواکتیو و اندیشیدن تمهیداتی متناسب با مقادیر مختلف آلودگی در مرحله بعد از تحلیل حوادث، الزامی می باشد.

 

در بهره ­برداری از یک راکتور هسته­ای، سیستم­های کنترلی و حفاظتی متنوعی طراحی می­شوند که در نهایت قلب راکتور به عنوان اصلی­ترین منبع رادیواکتیو، محافظت شده و از ذوب شدن آن جلوگیری خواهد شد.

 

در حال حاضر بیش از 300 راکتور تحقیقاتی در سراسر جهان موجود می باشند که بیش از 50 نوع آن­ها شامل راکتورهای تریگا [6] و بقیه شامل راکتورهای شناور در استخرهای آب سبک و همچنین راکتورهای آب سنگین تحت فشار با گردش جریان تحمیل شده[7] و قدرت های حرارتی در حدود ده مگاوات یا بیشتر هستند.

 

راکتورهای مورد مطالعه در این تحقیق یک راکتور تحقیقاتی است که قدرت حرارتی این راکتور 5 مگا­وات می باشد.

 

1-1- مشخصات راکتور مورد مطالعه در عملکرد عادی

 

راکتور مورد مطالعه در عملکرد عادی، یک راکتور تحقیقاتی 5 مگا­واتی فرضی از نوع استخری با آب سبک به عنوان کندکننده می باشد. سوخت مورد استفاده در این راکتور از نوع سوخت جامد ناهمگن است و آب در آن هم به عنوان خنک­کننده و هم حفاظ مورد استفاده قرار می گیرد. موارد استفاده این راکتور در کارهای پژوهشی، کارآموزی، آموزشی و همچنین برای تولید رادیوایزوتوپ ها می­باشد. این راکتور تحقیقاتی می‑تواند در فیزیک، شیمی، مهندسی و صنعت مورد استفاده قرار گیرد. نوع سوخت این راکتور، اورانیوم با غنای 20 درصد که به صورت پودر U3O8 در آلومینیوم خالص پخش شده است، می­باشد. سیستم خنک­کننده راکتور شامل سیستم های اولیه، ثانویه و سیستم پالایش می باشد ]1[.

دانلود پایان نامه ارشد : بررسی تأثیر کانسار سرب و روی منطقه لنجان اصفهان بر آلودگی‌های زیست محیطی

یکی از نتایج توسعه شهرنشینی و صنعتی شدن، پیامدهای منفی آن بر منابع طبیعی است (Dimitrovska et al., 2012). امروزه فلزات سنگین از نگرانی‌های عمده‌ی تمامی جوامع می‌باشند  (Kalhori et al., 2012). آلودگی محیط زیست بوسیله‌ی فلزات سنگین بطور عمده به فعالیت‌های انسانی، تولیدات صنعتی، فعالیت‌های کشاورزی، سوزاندن سوخت‌های فسیلی، معدن کاری و فرآوری فلزات بستگی دارد (Pagananelli et al., 2004). نواحی اطراف معادن با غلظت‌های بالایی از فلزات سنگین غنی شده است، و می‌تواند اثرات سمی بر روی گیاهان، حیوانات و انسان‌ها بگذارد (Shikazono et al., 2008). فلزات سنگین بدلیل غیرقابل تجزیه بودن و اثرات فیزیولوژیکی مخرب بر روی موجودات و اکوسیستم‌ها حتی در غلظت‌های کم به عنوان عوامل خطرناک و مخرب برای محیط زیست به شمار آمده و اثرات کوتاه مدت و بلند مدتی را بر آن خواهند داشت. در این میان، کادمیوم و جیوه در رده‌ی اول و مس، کروم، نیکل، سرب و روی در رده‌ی دوم خطرزایی برای اکوسیستم می‌باشند (چراغی و بلمکی، 1386). خاک‌های کشاورزی به طور مستقیم یا غیرمستقیم بر سلامت عمومی تأثیرگذار می‌باشند. در این خاک‌ها آلودگی فلزات سنگین ممکن است سبب دخالت در رشد گیاه و نیز آسیب به سلامت انسان‌ها از طریق ورود به زنجیره غذایی شود (شهبازی و دیگران، 1391).

 

همچنین آلودگی فلزات سنگین می‌تواند اثرات مضری بر روی منابع آب شیرین مانند سدها، دریاچه‌ها، رودخانه‌ها و آبخوان‌های زیرزمینی داشته باشد (Dong et al., 2009). امروزه در اکثر نواحی از آب‌های زیر زمینی برای مصارف گوناگون و بخصوص کشاورزی استفاده می‌شود (Ashraf et al., 2011). بنابراین در صورت آلودگی، این آب‌ها می‌توانند مشکلاتی را برای موجودات استفاده کننده از این آب‌ها به طور مستقیم یا غیرمستقیم ایجاد کنند. از این رو پایش آب و خاک در مناطق معدنی امری ضروری و مهم است.

 

از آن جا که زمین­های کشاورزی دشت لنجان در اطراف  معدن سرب و روی ایرانکوه واقع شده‌اند لذا، بررسی منابع آب و خاک این منطقه جهت ارزیابی آلودگی آن‌ ها و بررسی رفتار ژئوشیمیایی فلزات سنگین ضروری است. این پژوهش به منظور نیل به این اهداف انجام شده است.

 

1 – 1 – 1  فلزات سنگین

 

به عناصر سمت چپ جدول تناوبی که معمولأ در محلول، تشکیل کاتیون می‌دهند فلز گفته می‌شودفلزات سنگین فلزهایی با عدد اتمی 20 و بزرگتر از آن هستند. عناصر واسطه‌ی آرسنیک (As) و سلنیوم (Se) و نیز سرب (Pb)، جیوه (Hg) و کادمیوم (Cd) بیش‌ترین توجه زیست محیطی را به خود معطوف نموده‌اند (نلسون ایبای، 1390).

 

منشأ فلزات سنگین و خصوصیات فیزیکو شیمیایی خاک‌ها تعیین کننده‌ی اشکال شیمیایی آن‌ ها در محیط می‌باشند (نلسون ایبای، 1390).

 

اشکال شیمیایی یک فلز رفتار آن را در محیط و همچنین ظرفیت انتقال مجدد آن را مشخص می‌کند. فاکتورهای اساسی تأثیر گذار بر روی تحرک فلزات عبارت از مقدار مواد ارگانیک، ظرفیت تبادل کاتیونی، بافت خاک،  Eh و pH می‌باشد (Kashem et al., 2011).

 

بسته به نوع عنصر مهم‌ترین عوامل مؤثر بر تحرک آن نیز تغییر می‌کند (نلسون ایبای، 1390).

 

1 – 1 – 2 فلزات واسطه‌ی سرب، روی و کادمیوم:

 

در شرایط قلیایی و pH بالا این عناصر اکسی هیدروکسیدهای انحلال ناپذیر و یا در حضور کربنات، کربنات‌های انحلال ناپذیر تشکیل

دانلود مقاله و پایان نامه

 می‌دهند. در شرایط اسیدی و pH پایین جذب سطحی این فلزات ناچیز بوده ولی با افزایش pH جذب سطحی فرایندی مهم می‌باشد که سبب خروج فلزات از محلول از راه جذب سطحی بر روی ذرات و رسوبات می‌شود. هنگام مواجهه با مواد آلی حل شده (اسیدهای هومیک) این عناصر با ماده‌ی آلی تشکیل کمپلکس می‌دهند. میزان جذب سرب در مواد هومیک بیش‌تر از روی و در روی بیش‌تر از کادمیوم است. اکسی هیدروکسیدهای آهن و منگنز نیز جاذب‌های مناسبی برای این عناصر می‌باشند. در اغلب شرایط اکسایش-کاهش، این عناصر در محلول به صورت گونه‌های کاتیونی دو یا سه ظرفیتی وجود دارند (نلسون ایبای، 1390).

 

1 – 1 – 3 توزیع فلزات سنگین در محیط

 

روش‌های متعددی برای تعیین توزیع طبیعی و انسان زاد فلزات در محیط سطحی می‌تواند مورد استفاده قرار گیرد. یکی از این روش‌ها، مطالعه‌ی زمین شیمیایی ناحیه‌ای است که در آن عناصر فلزی به خاک‌ها، رودها و آب زیرزمینی وارد می‌شود. هدف از این گونه مطالعات، جمع آوری اطلاعاتی در مورد غلظت زمینه‌ی فلزات و نواحی با غلظت‌های بالا و بی‌هنجار فلز است. با نمونه برداری از انواع مختلف مواد می‌توان منشأ فلزات موجود در منطقه را تعیین نمود (نلسون ایبای، 1390).

 

خاک‌ها به عنوان بخشی از اکوسیستم زمینی نقش اکولوژیکی قابل توجهی را در چرخه‌ی عناصر ایفا می‌نمایند. مقدار فلزات سنگین خاک تحت تأثیر چندین فاکتور می‌باشد که عبارت از ترکیب شیمیایی و کانی شناسی سنگ مادر، مقدار مواد ارگانیک، توزیع سایز ذرات، افق‌های خاک، سن، سیستم زهکشی، زندگی گیاهی، دخالت‌های انسان و ورود آئروسول‌ها به خاک است (Gnandi et al., 2002).

 

1 – 1 – 4 چرخه‌ی طبیعی عناصر

 

زمین متشکل از چهار مخزن زمین کره (زمین جامد)، آب کره (رودها، دریاچه‌ها، آب‌های زیرزمینی و اقیانوس‌ها)، هواکره (پوشش گازی) و زیست کره (جانداران) می‌باشد. برهم کنش میان این مخازن، انتقال و سرنوشت فلزات مختلف را تعیین می‌کند. به استثنای شار کیهانی بسیار فرعی، منشأ همه‌ی فلزات زمین کره است. هوا کره، زیست کره و آب کره مخازن موقت فلزات به شمار می‌آیند. از طریق فعالیت‌های آتشفشانی ذرات فلزی به صورت‌های غبار و گاز از زمین کره به هواکره وارد می‌شوند. هوازدگی شیمیایی و سیالات ماگمایی سبب ورود فلز به آب کره می‌شود. برای بیش‌تر فلزات هواکره به عنوان یک مخزن بسیار کوتاه مدت عمل می‌کند، زیرا اکسایش مهم‌ترین فرایند در هواکره است. فلزات در فواصل طولانی به شکل ذرات ریز یا هواویزهای گازی انتقال می‌یابند. فلزات در نهایت توسط بارش خشک و‌تر و یا تنفس از جو خارج می‌شوند. گیاهان و جانوران فلزات را از راه تنفس (به شکل گازی)، بلع (خوردن) و جذب عناصر در طی رشد گیاه به دست می‌آورند. فلزات توسط فساد مواد آلی، رسوب گذاری و دفع از زیست کره خارج می‌شوند. سیالات ماگمایی و هوازدگی، دفع توسط گیاهان و جانوران و بارش خشک و ‌تر از فرایندهای انتقال فلز به آب کره می‌باشند. pH، پتانسیل اکسایش-کاهش، و حضور جذب کننده‌هایی چون کانی‌های رسی و اکسی هیدروکسیدها انتقال و زمان ماندگاری فلزات در آب کره را کنترل می‌کنند (نلسون ایبای، 1390).

 

1 – 1 – 5 چرخه‌های انسانزاد

 

فعالیت‌هایی همچون کشاورزی و یا ساخت جاده‌ها، به هم ریختگی سطح و تحرک فلز را در پی دارند. معدن کاری فلزات سبب خروج آن‌ ها از سنگ کره می‌شود. بهسازی زمین و دفع پسماند باعث بازگرداندن فلزات به زمین کره و آب کره می‌شوند. ورود انسانزاد فلزات به هواکره از طریق سوزاندن سوخت‌های فسیلی و برخی فعالیت‌های دیگر امکان پذیر است. فلزات موجود در هواکره از طریق تنفس و بلع وارد بدن انسان می‌شوند که اگر از حد مجاز افزایش یابد سبب ایجاد خطراتی برای سلامت انسان می‌شوند (نلسون ایبای، 1390).

 

1 – 1 – 6 سرب

 

سرب متعلق به گروه IVa جدول تناوبی عناصر است. وزن اتمی آن 19/207 و عدد اتمی آن 82 است. این عنصر دارای چگالی 34/11 گرم بر میلی لیتر، نقطه ذوب 5/327 درجه سانتی گراد و نقطه جوش 1149 درجه سانتی گراد است. سرب به رنگ نقره‌ای سفید مایل به آبی است. این عنصر فلزی نرم با حالت‌های اکسیداسیون 0، 2+، 4+ است. حالت اکسیداسیون 2+ در بیش‌تر اجزای غیرارگانیک غالب است (Merian et al., 2001).

 

سرب فلزی است که به سختی در آب حل می‌شود اما در اسید نیتریک و اسید سولفوریک غلیظ به آسانی حل می‌شود. اغلب نمک‌های دو ظرفیتی سرب به سختی قابل حل هستند (مانند سولفیدها و اکسیدهای سرب)، اما استثنائاتی هم در این بین یافت می‌شود. برای مثال نیترات سرب، کلرات سرب و تا اندازه‌ای سولفات سرب و کلراید سرب از این جمله می‌باشند. به علاوه برخی نمک‌ها با اسیدهای آلی قابل حل هستند (مانند اگزالات سرب).

 

سرب (II) دارای خواص الکترونیک است، در نتیجه دارای شیمی کوردیناسیون قوی بوده و توانایی تقلید از دو یون کلسیم و روی را در سیستم‌های بیولوژیک دارا می‌باشد. سرب توانایی اتصال به اتم‌های دهنده (Donner) را دارا است (Nordberg et al., 2007).

پایان نامه ارشد: مطالعه ترمودینامیكی جذب برخی یون های فلزی بر روی برگ درخت Ziziphus اصلاح شده با نانوگرافن


جریان پساب‌های خروجی از صنایع مختلف عمدتاً حاوی مقادیر متفاوتی فلزات سنگین می‌باشد علاوه براین آب های زیر زمینی نیز با توجه به محل استخراج، حاوی مقداری از این فلزات می‌باشند. پساب خروجی از صنایع پتروشیمی‌ و پالایشگاه‌های نفت و گاز، صنایع ریخته گری، صنایع تولید شیشه و…. حاوی مقادیر قابل توجهی فلزات سنگین از جمله سرب، مس، جیوه، روی و كادمیم می‌باشد. اكثر این فلزات سمی‌ می‌باشند. تخلیه این پساب‌ها در محیط باعث ایجاد مشكلات زیست محیطی می‌شود. این فلزات وارد زنجیره غذایی انسان شده و در بافت زنده تجمع میکنند. ارتباط انسان با فلزات سنگین در ده‌های اخیر و با ورود تکنولوژی و توسعه صنایع شیمیایی رو به افزایش بوده است[1].
استفاده از فلزات در فرایند‌های صنعتی و محصولات تولیدی امروز نمودهایی از آن هستند: از جمله جیوه در پر كردن دندان استفاده می‌شود، سرب در بنزین خودروها وجود دارد كه هر روزه با افزایش تعداد خودروها مقدار این فلز سنگین در محیط زیست خصوصاً شهرهای بزرگ رو به افزایش است. همچنین سرب در رنگ‌ها، مواد آرایشی، شامپوها و دیگر موادی كه برای مو استفاده می‌شود وجود دارد. دهان شویه‌ها، خمیر دندان و صابون‌ها نیز حاوی مقادیری فلزات سنگین از جمله سرب می‌باشند.
در جوامع صنعتی امروز، گریزی از مواد شیمیایی و فلزات سمی‌نیست. خصوصاً كه خیلی از مشاغل و حرفه‌ها مستلزم قرار گرفتن در معرض فلزات سنگین هستند. افراد در تنها بیش از 50 شغل مستلزم برخورد با جیوه هستند، مثل: پزشكان، كاركنان كارخانجات داروسازی، نقاش‌ها، كاركنان چاپ‌خانه‌ها، فلزكارها، جوشكار‌ها ، دكورسازها و سفالگرها.
تحقیقاتی كه روی اثرات سمی‌فلزات سنگین انجام شده، تائید می‌كنند كه این مواد می‌توانند مستقیماً با مختل كردن عوامل مغزی و عصبی بر رفتار انسان اثر بگذارند. فلزات سنگین بر مواد انتقال دهنده پیام‌های عصبی و عملكرد آنها تاثیر دارند و فرایندهای متابولیكی بی‌شماری در بدن را تغییر می‌دهند. سیستم‌هایی كه عناصر فلزی سمی، می‌توانند آنها را تخریب كنند یا كارشان را با مشكل مواجه كنند جاهایی مثل: خون و عروق قلبی،مسیرهای سم زدایی بدن و  مسیرهای تولید انرژی، آنزیم ها، سیستم گوارشی، ایمنی، اعصاب مركزی و محیطی، تولید مثل و مجاری ادراری هستند .
تنفس ذرات فلزات سنگین، حتی در مقادیر كم می‌توانند اثر جدی روی سلامت انسان داشته باشند. فلزات سنگین می‌توانند واكنش‌هایی حساسیتی را افزایش دهند، جهش‌های ژنتیكی ایجاد كنند، با عناصر كمیاب مفید برای بدن در واكنش‌هایی بیوشیمیایی رقابت كنند و نیز مثل آنتی‌بیوتیك‌ها عمل كنند و هر دو دسته مفید و مضر باكتریها را از بین ببرند. بیشتر اثر تخریبی فلزات سمی، ناشی از افزایش اكسید شدن رادیكال‌های آزاد توسط آنها است. رادیكال‌های آزاد به طور طبیعی وقتی  سلول‌ها با اكسیژن واكنش می‌دهند (اكسایش) تولید می‌شوند. اما در حضور فلزات سنگین سمی‌یا كمبود آنتی اكسیدان‌ها، به صورت كنترل نشده ای تولید می‌شوند. آنتی اكسیدان‌ها مثل ویتامین‌های A, C, E فعالیت رادیكال‌های آزاد را كم می‌كنند.
فلزات سنگین همچنین می‌توانند اسیدیته خون را افزایش دهند و بدن برای حفظ pH مناسب خون، كلسیم را از استخوان‌ها بیرون می‌كشد. به علاوه فلزات سنگین شرایطی را ایجاد می‌كنند كه منجر به التهاب در شریان‌ها و بافت‌ها می‌شوند كه خود باعث خروج بیشتر كلسیم به سمت بافت‌ها به عنوان بافر می‌شود اما مشكل دیگری ایجاد میشود، به طور مثال، سخت شدن دیواره شریان و انسداد پیشرونده.

دانلود مقاله و پایان نامه

 

اگر جای كلسیم از دست رفته پر نشود برداشت دائمی‌این ماده معدنی مهم از استخوان‌ها باعث پوكی استخوان می‌شود. مطالعاتی نشان می‌دهد كه هر مقدار جزئی از عناصر سمی، نتایج منفی بر سلامتی دارند. كودكان و سالخوردگان كه سیستم ایمنی ضعیف تری دارند در مقابل مسمومیت با این مواد، آسیب پذیرند.
2-1- اهمیت اندازه‌گیری یون های فلزی:
1-2-1- اهمیت اندازه‌گیری روی
روی برای ساخت كلاژن، جهت استحكام پوست و مو ضروری است. این عنصر با دارا بودن خواص آنتی اكسیدانی از پوست در مقابل اثرات نامطلوب اشعه فرابنفش خورشید محافظت می‌كند[1].
تحقیقات نشان داده اند این عنصر دارای خواص ضد آكنه و ضد التهابی بوده و در تسریع و ترمیم زخمهای پوستی نقش دارد[1]. فلز روی در تقویت سیستم ایمنی نقش بسزایی ایفا می‌كند و از بروز بیماری ها خصوصاً سرماخوردگی جلوگیری می‌كند. در بهبود حس چشایی خصوصاً در سالمندان نقش دارد.
در تولید هورمون های جنسی از جمله تستسترون نقش داشته و كمبود آن سبب نقص در دستگاه تولید مثلی می‌شود. سبب بهبود عملكردهای ورزشی در ورزشكاران می‌شود. به عملكرد انسولین كمك كرده و در تنظیم قند خون نقش دارد. روی در تولید و فعالیت آنزیم‌ها، همچنین در ایجاد پروتئین موثر است.
بیشتر مواد معدنی كمیاب از جمله روی در صورت مصرف بیش از حد برای بدن سمی‌هستند و باعث اختلال در كار معده و دیگر عضوهای حیاتی بدن می‌شوند.
بالا رفتن بیش از حد روی در بدن باعث استفراغ می‌شودو همچنین باعث افزایش كلسترول بد و كاهش كلسترول خوب بدن می‌شود. بعضی از تحقیقات نشان می‌دهد كه مصرف خیلی زیاد روی باعث كاهش عملكرد ایمنی می‌شود. مصرف زیاد روی می‌تواند با جذب مس تداخل كرده و باعث كمبود مس شود. این موضوع بر مقدار آهن بدن اثر گذاشته و می‌تواند منجر به كم خونی شود. مصرف زیاد آهن و مس با جذب روی تداخل می‌كند.
2-2-1- اهمیت اندازه‌گیری سرب:
سرب فلزی است براق، انعطاف پذیر، بسیار نرم، شدیداً چكش‌خوار و به رنگ سفید مایل به آبی كه از خاصیت هدایت الكتریكی پایینی برخوردار می‌باشد. این فلز شدیداً در مقابل خوردگی مقاومت می‌كند [2]. و به همین علت از آن برای نگهداری مایعاتی كه خوردگی زیادی دارند مانند اسید سولفوریک استفاده می‌شود.
با افزودن مقادیر خیلی كم آنتیموان یا فلزات دیگر به سرب می‌توان آن را سخت نمود. یكی از فلزات سنگین و از عوامل آلوده كننده محیط، سرب است كه با ایجاد اثرات سمی‌شدید بر روی انسان و دیگر جانداران نقش مهمی‌در آلودگی محیط زیست در قرن حاضر دارد. این مشكل مستقیماً با مصارف زیاد صنعتی آن ارتباط دارد. مصرف این عنصر در صنایع مختلف موجب بالا رفتن میزان آلودگی در اكوسیستم‌های مختلف محیطی شده و می‌تواند به طور مستقیم و غیر مستقیم باعث آلودگی محیط زیست از جمله خاك و مصرف كنندگان گردد. در نتیجه ورود مقادیر متفاوت این فلز سمی‌ به اشكال مختلف از جمله از طریق خاك به زنجیره غذائی انسان و جانداران، محیطی نامناسب برای زندگی با اثرات نامطلوب و امكان بروز بیماری‌های مختلف را فراهم نموده است [2]. سرب یک مخرب قوی اعصاب بوده كه در رشد و كاركرد اكثر اندام‌های بدن به خصوص كلیه‌ها، سلول‌های قرمز خون و سیستم اعصاب مركزی مزاحمت ایجاد می‌كند.
در نوزادان و كودكان، سرب رشد سیستم اعصاب مركزی و مغز را به تاخیر می‌اندازد. حتی مقادیر كم سرب باعث كاهش ضریب هوشی، ناتوانی در یادگیری  اختلالات رفتاری می‌شوند. مسمومیت ناشی از سرب در كودكان بر اثر رنگ‌های ساختمانی كه در آن‌ ها از سرب استفاده می‌شود، نیز ایجاد می‌شود. امروزه مسمومیت با سرب بیشترین خطر برای سلامتی كودكان در كشورهای صنعتی می‌باشد. مقدار سرب در آب آشامیدنی نیز دارای اهمیت می‌باشد، به خصوص در منازل با شیر آب و اتصالات ساخته شده از برنج (شامل سرب) یا، منازلی كه لوله‌ها با سرب لحیم شده‌اند.
3-2-1- اهمیت اندازه گیری مس
مس فلزی نسبتاً قرمز رنگ است که از خاصیت هدایت الکتریکی و حرارتی بسیار بالایی برخوردار می‌باشد (در بین فلزات خالص، تنها خاصیت هدایت الکتریکی نقره در حرارت اطاق از مس بیشتر است). مس برای تمام موجودات هوازی و اکثر موجودات بی‌هوازی از فلزات ضروری به شمار می‌رود [2].
درانسان عملکرد بیولوژیکی آن به عمل آنزیمی یک سری پروتئین‌های خاص و ضروری بستگی دارد. وجود مقادیر بسیار کم مس در غذاها و نوشیدنی‌ها باعث ترشیدگی و بی‌بو و بی‌رنگ شدن آن‌ ها می‌شود.
وارد شدن مقدار زیادی نمک‌های مس به بدن از طریق خوردن، آشامیدن و یا تنفس هوای آلوده می‌تواند باعث ایجاد ضایعات معده‌ای – روده‌ای گردیده و اختلال در سلامتی انسان را باعث گردد. ضایعاتی نظیر همولیزه آسیب کبد و اختلالات کلیوی در اثر وارد شدن مقادیر زیادی مس در بدن گزارش گردیده است.

دانلود پایان نامه ارشد : بررسی تاثیر متغیرهای عملیات حرارتی بر ریزساختار و مقاومت به سایش چدن نایهارد

   1

 

فصل 2- مرور بر منابع   5

 

2-1- معرفی چدن های سفید مقاوم به سایش (چدن نایهارد) 5

 

2-2- تاریخچه.. 6

 

2-3- کاربرد چدن‌های نایهارد.. 7

 

2-4- چدن‌های نایهارد و استانداردهای آن… 9

 

2-4-1- ترکیب شیمیایی و ریزساختار.. 9

 

2-4-2- چدن نایهارد 1 و2.. 10

 

2-4-3- چدن نایهارد 4.. 12

 

2-5- تاثیر عناصر آلیاژی… 14

 

2-5-1- کربن…. 14

 

2-5-2- کروم.. 16

 

2-5-3- نیکل…. 17

 

2-5-4- مولیبدن… 18

 

2-5-5- تنگستن…. 18

 

2-5-6- نیوبیم… 19

 

2-5-7- وانادیم… 21

 

2-5-8- منگنز… 22

 

2-5-9- مس    22

 

2-5-10- سیلیسیم… 22

 

2-5-11- بور.. 24

 

2-5-12- گوگرد.. 24

 

2-5-13- فسفر… 24

 

2-5-14- نتیجه گیری… 24

 

2-6- ساختار متالورژیکی چدن نایهارد.. 25

 

2-6-1- فازهای مختلف موجود در چدن نایهارد.. 25

 

2-6-2- فازهای کاربیدی در چدن نایهارد.. 26

 

2-6-3- تاثیر شکل و اندازه کاربیدها در چدن نایهارد.. 31

 

2-6-4- ساختمان زمینه چدن نایهارد.. 31

 

2-7- ذوب و ریخته گری… 34

 

2-8- انجماد چدن نایهارد.. 35

 

2-9- عملیات حرارتی…. 38

 

2-10- عملیات ناپایدارسازی و تبدیل آستنیت در آن… 41

 

2-10-1- تشریح فرایند… 41

 

2-10-2- تبدیل مارتنزیتی در حین عملیات حرارتی ناپایدارسازی… 43

 

2-11- عملیات حراتی تمپر… 43

 

2-12- پارامترهای عملیات حرارتی…. 44

 

2-13- مقاومت به سایش چدن‌های نایهارد.. 47

 

2-13-1- رابطه بین سختی و مقاومت به سایش……. 48

 

2-13-2- درصد کربن و ریزساختار.. 48

 

2-13-3- مورفولوژی، مقدار حجمی و اندازه کاربید یوتکتیک….. 50

 

2-13-4- دمای تمپر… 50

 

2-13-5- اثر آستنیت باقیمانده. 50

 

2-13-6- روش‌های آزمون سایش……. 51

 

2-14- خلاصه تحقیقات انجام شده در خصوص نایهارد 4.. 53

 

2-15- جمع ‌بندی و هدف از تحقیق…. 54

 

فصل 3- روش تحقیق   55

 

3-1- طراحی آزمایش……. 56

 

3-1-2- تهیه مدل و قالبگیری… 57

 

3-1-3- ذوب و بارریزی… 58

 

3-1-4- ترکیب شیمایی چدن نایهارد4 ریخته شده. 58

 

3-1-5- عملیات حرارتی ناپایدارسازی… 59

 

3-1-6- مطالعات میکروسکوپی برای بررسی ریزساختار.. 59

 

3-1-7- آنالیز تفرق اشعه X (XRD) 60

 

3-1-8- آزمون سختی…. 60

 

3-1-9- آزمون سایش……. 61

 

فصل 4- نتایج و بحث     63

 

4-1- بررسی ریزساختار و سختی چدن نایهارد در حالت ریختگی…. 63

 

4-2- اثر زمان ناپایدارسازی بر سختی…. 65

 

4-3- اثر زمان ناپایدارسازی در دماهای مختلف بر ریزساختار.. 68

 

پایان نامه

 

 

4-4- اثر دمای ناپایدارسازی در زمان ثابت بر سختی…. 79

 

4-5- اثر دمای ناپایدارسازی بر ریزساختار در زمان ثابت….. 82

 

4-6- بررسی ریزساختار با میکروسکپ‌الکترونی روبشی…. 85

 

4-7- اثر عملیات تمپر بر تغییرات سختی و ریزساختار.. 86

 

4-8- اثر عملیات ناپایدارسازی بر مقاومت به سایش چدن نایهارد.. 91

 

نتیجه‌‌گیری   97

 

پیشنهادات برای تحقیقات بیشتر   99

 

مراجع   101

 

پیوست ‌ها 107

 

چدنهای مقاوم به سایش بر مبنای ریزساختار  و آلیاژهای آنها به پنج گروه عمده تقسیم می­ شود که در این میان چدن نایهارد4 چدنی با 6% نیکل، 9% کروم و 2% سیلیسیم با کربن یوتکتیک و ساختاری با کاربیدهای یوتکتیک M7C3  و زمینه عاری از پرلیت در حالت ریختگی و نیز بعد از عملیات حرارتی غالباً بصورت مارتنزیتی می­باشد. این آلیاژها از طریق یک واکنش یوتکتیک که منجر به تشکیل آستنیت و کاربید یوتکتیک M7C3  شده، منجمد می­ شود.

 

چدن نایهارد4 از قدیمی­ترین گروه های چدنهای پر آلیاژ در صنعت بوده که بیش از 50 سال قدمت داشته و مواد بسیار مناسبی در آسیابهای سیمان محسوب می­شوند. همچنین مصرف این نوع چدنها در تولید قطعاتی نظیر بوش ‌ها، سیلندرها، بوش سیلندرها، کاسه چرخ و … می باشد.

 

در این چدن، نیکل عنصری است که مانع از تشکیل پرلیت از زمینه آستنیتی شده و باعث تشکیل یک ساختار سخت مارتنزیتی در حین سرد شدن در قالب می­ شود. کروم هم در تشکیل کاربیدهای یوتکتیک M7C3  و نیز بی اثر کردن اثر گرافیت زایی نیکل مورد استفاده قرار می­گیرد.

 

مقاومت سایشی و خواص مکانیکی چدن نایهارد به نوع، مورفولوژی و توزیع کاربیدهای یوتکتیک و نیز ماهیت ساختار زمینه بستگی دارد. ترکیب شیمیایی، شرایط انجماد و نیز عملیات حرارتی بر این پارامترها تاثیر گذار خواهند بود.

 

مقاومت سایشی خوب چدنهای نایهارد به دلیل ریزساختار  آنهاست که شامل کاربیدهای سخت یوتکتیک توزیع شده در زمینه مارتنزیتی، آستنیتی و رسوب کاربیدهای ثانویه می­باشد. در مجموع ساختار زمینه می ­تواند هم روی مقاومت سایشی و هم مقاومت ضربه تاثیر گذار باشد.

 

ریزساختار  آلیاژ یک نقش اساسی را در رفتار سایشی ایفا می­ کند. همانطور که بیان شد مقدار حجمی کاربیدها و نیز ساختار زمینه و توانایی آن برای تغییر فرم و کارسختی در حین سایش، بر مقاومت سایشی موثر می­باشند. با مطالعات صورت گرفته، مشحص شد که ارتباط بسیار قوی بین پارامترهای ریزساختاری و مقاومت به سایش با شرایط عملیات حرارتی وجود دارد. لذا تعیین پارامترهای عملیات حرارتی برای بهبود مقاومت به سایش و خواص مکانیکی چدن نایهارد موثر می­باشد..

 

ساختار بعد از عملیات حرارتی نقش عمده­ای را بر خواص مکانیکی و متالورژیکی ایفا می­ کند که در نحوه کارکرد چدنهای نایهارد تاثیر به سزایی دارد. این چدن در حالت ریختگی شامل 50% آستنیت باقیمانده بوده و دارای سختی HB­ (500-400) بوده که با انجام سیکل عملیات حرارتی جهت تشکیل مارتنزیت مقدار سختی به HB (600-550) افزایش می­یابد.

 

عملیات حرارتی این چدنها شامل ناپایدارسازی در دماهای 750 تا 820 درجه سانتی گراد بوده و آنچه در عملیات حرارتی صورت می­گیرد رسیدن به ریزساختاری عاری از پرلیت است. این قطعات پس از ناپایدارسازی با سرعت آهسته­ای سرد می­شوند. از پارامترهای مهم در عملیات حرارتی، زمان و دمای ناپایدارسازی می­باشد. بهترین دمای ناپایدارسازی برای رسیدن به ماکزیمم سختی برای هر ترکیب شیمیایی متغیر است.

 

دمای ناپایدارسازی مقدار کربنی که باید در زمینه آستنیتی بصورت محلول باقی بماند را تعیین می­ کند. دماهای خیلی بالا پایداری آستنیت را افزایش داده لذا مقادیر آستنیت باقیمانده بیشتر، سبب کاهش سختی می­ شود. دماهای پایین هم منجر به مارتنزیت کم کربن شده و باعث کاهش سختی و مقاومت به سایش می­ شود. بنابراین تعیین این پارامترها در خواص مورد نظر کاملاً موثر می­باشند.

 

در این تحقیق سعی شد تا تاثیر دما و زمان ناپایدارسازی بر ریزساختار  و خواص سایشی چدن نایهارد4 با انجام آزمایشهای مختلف بررسی شود. لذا با ثابت در نظر گرفتن سایر پارامترها، ناپایدارسازی نمونه­های چدن نایهارد4 در چهار دمای 750،800،850،900 درجه سانتی ­گراد و زمان های 1،2،3،4،5،6 ساعت  صورت گرفت و سپس با انجام آزمایشهای مختلف اثر این پارامترها بر ریزساختار چدن نایهارد بررسی شد.

 

آزمون سایش هم در شرایط تنش آرام به روش Pin On Disc و با ساینده Al2O3 بر روی نمونه­ها انجام شد تا اثر پارامترهای مورد نظر بر روی خواص سایشی چدن نایهارد مورد بررسی قرار گیرد.

 

لازم به ذکر است که برای بررسی تاثیر پارامترهای دما و زمان ناپایدارسازی آزمایشهای مختلفی چون تعیین ریزسختی­سنجی و درشت­سختی­سنجی به روش ویکرز، تعیین ریزساختار با میکروسکوپ نوری و میکروسکوپ SEM، آنالیز XRD صورت گرفته تا نتایج حاصله بتواند تحلیل درستی را ارائه نماید.

 

فصل 1- مرور بر منابع

 

1-1- معرفی چدن های سفید مقاوم به سایش (چدن نایهارد)

 

چدنهای نایهارد بر مبنای سیستم سه تایی Fe-Cr-C و از مهمترین آلیاژهای مقاوم به سایش در صنعت می­باشند. این آلیاژها به دلیل خواص ضد سایش، به طور گسترده­‌ای در صنایع سیمان، فولاد و آسیاب­های خرد کننده به کار می­روند. قطعاتی که در آسیاب­ها استفاده می­شوند، نه تنها در مقابل سایش، بلکه در برابر تنش­های دینامیکی متعدد در حین کار باید مقاوم بوده تا از بروز عیوب ناگهانی و شکست قطعات جلوگیری شود [1،2].

 

چدنهای غیر آلیاژی یا کم آلیاژ با کربن حدود 4% با اینکه ساختارشان مارتنزیتی است، چقرمگی پایینی دارند. چدنهای سفید غیر آلیاژی که اغلب کاربید موجود در آنها به صورت سمانتیت است، به خاطر مقاومت در مقابل سایش مورد استفاده قرار گرفته‌اند. ضعف عمده این چدنها در ساختارشان است [3].

 

فاز کاریبد یک شبکه پیوسته‌ای را در اطراف دانه‌های آستنیت تشکیل داده و موجب تردی و ترک‌دار شدن می‌گردد. افزایش یک عنصر آلیاژی که کربن را به صورت کاربیدی غیر از سمانتیت با سختی بیشتر و خواص مطلوب‌تر درآورده و مقدار کربن زمینه را کاهش دهد، موجب بهبود هم ‌زمان چقرمگی و مقاومت سایشی می­ شود. عنصر مورد استفاده معمولاً کروم بوده و کاربید آن به صورت M7C3 می­باشد [3،4].

 

چدن‌های مقاوم به سایش بر مبنای ریزساختار  و آلیاژهای آنها، به پنج گروه عمده شامل چدن‌های پرلیتی (FeC)، نایهارد یا نیکل – کروم (M3C)، نایهارد 4 (M7C3)، پرکروم (M7C3) و در نهایت ویژه (MXC) تقسیم می­ شود [5].

 

نخستین خانواده چدنهای پرآلیاژ که بیشترین اهمیت را کسب کرده‌اند، چدنهای نایهارد با زمینه مارتنزیتی، کاربیدی بوده که مقدار کربن در آنها از 5/2 تا 6/3 درصد متغیر می­باشد. نایهارد نام عمومی برای خانواده چدنهای سفید است که با نیکل و کروم آلیاژ شده و مقاومت سایشی بالایی دارند. نایهارد شامل ریزساختاری از کاربیدها و یک زمینه­ مارتنزیتی- آستنیتی- بینیتی یا زمینه‌ی غالباً مارتنزیتی است که این ساختار توسط مقادیر کربن، نیکل، کروم، سیلیس و نیز عملیات حرارتی نهایی ایجاد می‌شود [2،6].

 

در چدن نایهارد وجود عنصر نیکل به منظور به تعویق افتادن تشکیل پرلیت و نیز کاهش سرعت بحرانی سرد شدن در محدوده­ 3/3 تا 5 درصد، به کار می‌رود که منجر به تشکیل مارتنزیت به همراه مقداری آستنیت باقی مانده در زمینه ساختار می­ شود. کروم از خاصیت گرافیت‌زایی نیکل جلوگیری کرده و باعث پایداری کاربیدها می­ شود [2،7،8،9].

 

ترکیب کاربیدها با زمینه­ مارتنزیتی مقاومت سایشی خوبی ایجاد می‌کند. تعیین درصد عناصر آلیاژی در چدن نایهارد به ابعاد قطعه و خواصی که از آن انتظار می‌رود، بستگی دارد. زمانیکه مقاومت سایشی خوب و ضربه پذیری پایین مورد نظر باشد، کاربیدهای درشت­تر انتخاب شده و مقدار کربن بین 3/3 تا 6/3 بوده و در صورتی که قطعه در معرض بارهای ضربه­ای قرار می­گیرد مقدار کربن بین 7/2 تا 2/3 درصد متغیر خواهد بود [9،10].

 
مداحی های محرم