وبلاگ

توضیح وبلاگ من

موضوع: "بدون موضوع"

پایان نامه ارشد: بررسی فعالیت نانوکاتالیست آندی بر پایه پلاتین جهت کاربرد در پیل های سوختی الکلی مستقیم


امروزه در استفاده از سوخت‌­های فسیلی که 80 درصد انرژی زمین را تأمین می­‌کنند دو مشکل اساسی وجود دارد. اول اینکه ذخایر این سوخت‌­ها محدود است و دیر یا زود تمام خواهند شد. دوم اینکه سوخت‌های فسیلی از عوامل اساسی ایجاد مشکلات زیست محیطی مثل گرم شدن کره زمین، تغییرات آب و هوایی، ذوب کوه‌های یخی، بالا آمدن سطح دریاها، باران‌های اسیدی، از بین رفتن لایه ازن و … هستند [1].
در اوایل سال 1970 استفاده از انرژی هیدروژن برای حل مشکلات ناشی از مصرف سوخت‌های فسیلی پیشنهاد شد. هیدروژن یک منبع انرژی عالی با ویژگی‌های فراوان است. هیدروژن سبک‌ترین، تمیزترین و پر­بازده‌ترین سوخت به­حساب می­آید. یکی از ویژگی‌های هیدروژن این است که طی فرایندهای الکتروشیمیایی در پیل­های سوختی می­‌تواند به انرژی الکتریکی تبدیل شود. قابل ذکر است بازده چنین تبدیلی در پیل سوختی بالاتر از راندمان یک موتور احتراق داخلی است که انرژی سوخت فسیلی را به انرژی مکانیکی تبدیل می­ کند. علاوه بر این سوخت، سوخت‌های دیگری نیز همچون الکل‌ها به­خصوص متانول و اتانول به­ دلیل چگالی بالای انرژی و آسانی ذخیره‌سازی و حمل آن­ها نیز مورد توجه قرار گرفته‌اند.
2-1- پیل سوختی چیست؟
پیل سوختی یک وسیله الکتروشیمیایی است که انرژی شیمیایی سوخت را به­ طور مستقیم به انرژی الکتریکی تبدیل می­ کند. معمولاً فرایند تولید انرژی الکتریکی از سوخت‌های فسیلی شامل چند مرحله تبدیل انرژی است:
– احتراق که انرژی شیمیایی سوخت را به گرما تبدیل می­ کند.
– گرمای تولید شده برای به‌جوش آوردن آب و تولید بخار استفاده می­ شود.
– بخار، توربینی را به حرکت در می آورد و در این فرایند انرژی گرمایی به انرژی مکانیکی تبدیل می­ شود.
– انرژی مکانیکی باعث راه­اندازی یک ژنراتور و در نتیجه تولید انرژی الکتریکی می­ شود.
در یک پیل سوختی برای تولید انرژی الکتریکی نیازی به عمل احتراق نیست و هیچ بخش متحرکی مورد استفاده قرار نمی‌­گیرد، به­عبارت دیگر به­جای سه مرحله تبدیل انرژی، در یک مرحله انرژی الکتریکی تولید می‌­شود (شکل1-1).
نکته مهم دیگر که به آن می‌توان اشاره داشت این است که این پیل‌ها موتورهای الکتروشیمیایی هستند نه موتور گرمایی و به­همین دلیل تابع محدودیت سیکل کارنو نبوده و لذا بازده آن­ها بالا می­‌باشد.
مزایای فناوری پیل سوختی عبارتند از:
– آلودگی بسیار پایین و در حد صفر.
پیل­های سوختی که با هیدروژن کار می­ کنند آلودگی در حد صفر دارند و تنها خروجی آن­ها هوای اضافی و آب می­‌باشد. این ویژگی نیز باعث شده پیل‌های سوختی نه تنها برای حمل و نقل مورد توجه قرار گیرند بلکه برای کاربردهای خانگی و نظامی نیز مورد استفاده قرار گیرند.

پایان نامه

 اگر پیل سوختی از سوخت دیگری برای تولید هیدروژن مورد نیاز خود استفاده کند یا اگر متانول را جایگزین هیدروژن در پیل سوختی کنیم آلودگی‌هایی از جمله دی­ اکسید‌کربن تولید می­ شود، ولی مقدار این آلودگی­ها کمتر از آلودگی­هایی است که وسایل معمول تولید انرژی به­وجود می­آورند.

– وابستگی کمتر به نفت.
هرچند هیدروژن به سادگی در دسترس نیست ولی می­توان آن را از الکترولیز آب یا سوخت­های هیدروکربنی به­ دست آورد.
– عدم وجود بخش­های متحرک و طول عمر بالا.
از آنجایی که پیل سوختی هیچ بخش متحرکی ندارد از نظر تئوری در شرایط ایده­آل طول عمر یک پیل سوختی تا زمانی که سوخت به آن می­رسد می­‌تواند بی‌نهایت باشد.
– وزن و اندازه.
پیل‌های سوختی در ظرفیت­های متفاوتی ساخته می­ شود (از میکرووات تا مگاوات) که باعث می­ شود برای کاربردهای مختلف مورد استفاده قرار گیرند.
– آلودگی صوتی بسیار پایین.
– راندمان بالا نسبت به فناوری‌های دیگر.
3-1- تاریخچه
در سال 1839 ویلیام گرو[1] فیزیکدان و روزنامه نگار انگلیسی اصول کار پیل سوختی را کشف کرد (شکل 1-2). گرو، چهار پیل بزرگ که هر کدام دارای ظرفی محتوی هیدروژن و اکسیژن بودند را برای تولید الکتریسیته به­کار برد. الکتریسیته حاصل آب را در یک ظرف کوچک‌تر به اکسیژن و هیدروژن تبدیل می‌‌‎کرد [1].
اما سابقه تولید پیل سوختی به سال 1889 بر می­گردد که اولین پیل سوختی توسط لودویک مند[1] و چارلز لنجر[2] ساخته شد. در اوایل قرن بیستم تلاش­ هایی در جهت توسعه پیل سوختی صورت گرفت. در سال 1995 پیل سوختی قلیایی پنج کیلو­واتی ساخته شد.
از سال 1960 سازمان فضایی آمریکا (ناسا) از پیل­های مزبور در سفینه­های جیمینی و آپولو جهت تولید الکتریسیته و تهیه آب مورد نیاز فضانوردان استفاده کرد. در طی دهه هفتاد فن­آوری پیل سوختی در وسایل خانگی و خودرو به­کار گرفته شد. اولین خودروی مجهز به پیل سوختی حدود سال 1970 توسط شرکت جنرال موتورز آمریکا ساخته شد. با سرمایه ­گذاری جدی وزارت انرژی آمریکا از زمان جنگ خلیج فارس و نیز سرمایه گذاری بعدی این وزارتخانه فن­آوری پیل سوختی توسعه چشم­گیری پیدا کرده است.
از دهه هشتاد به بعد شرکت بالارد در کانادا تحت حمایت دولت با انجام پروژه ساخت زیردریایی که در آن از پیل سوختی استفاده می­شد به­عنوان پیش­رو این صنعت در دنیا معرفی شد.
هواپیمای پیل سوختی ناسا در سال 2000 میلادی با نیروی محرکه دوگانه باتری خورشیدی و پیل سوختی مورد بهره ­برداری قرار گرفت که توان پرواز طولانی (شش ماه) بدون وقفه را دارد.
پیشرفت‌های بعدی همه در جهت بهینه کردن هر چه بیشتر این پیل‌ها و افزایش بازده کارآیی آنها می­باشد تا این پیل­ها را به شکل یک محصول تجاری در دسترس تبدیل کنند [2].
4-1- کاربردهای پیل سوختی
در شکل (1-3) منابع تأمین کننده هیدروژن و تقاضاهای مورد استفاده از هیدروژن و سهم هر یک به صورت شماتیک رسم شده است.
همان‌طوری­که در شکل 1-4 مشخص است، می‌توان کاربردهای پیل سوختی را به سه بخش کاربرد وسایل قابل حمل، کاربرد در بخش حمل و نقل و وسایل متحرک و کاربرد­های نیرو­گاهی تقسیم نمود.
[1]Ludwig Mond
[2]Charles Lenjer
[1] William Grove

دانلود پایان نامه : سیستم برنامه ریزی و کنترل تولید در صحن کارخانه با استفاده از همکاری عامل های هوشمند برای حصول به سفارشی سازی انبوه

پیشرفت­های اخیر در تولید منعطف و تکنولوژی اطلاعات این امکان را فراهم کرده است که سیستم­های تولیدی بتوانند با هزینه پایین­تر طیف وسیع­تری از محصولات یا خدمات را ارائه نمایند. به­علاوه افزایش رقابت در سطح جهانی منجر به رویارویی صنایع با رویکرد افزایش ارزش مشتری در ارائه محصول یا خدمات شده است. بنابراین لزوم درنظر گرفتن نیازهای خاص هر کدام از مشتریان، تولید­کنندگان را به سمت دخالت دادن مشتریان در فرایند تولید رهنمون شده است. در این میان سفارشی‌سازی در تولید انبوه[1] یکی از روش‌های نوین تولید است که هر روز مورد توجه تولیدکنندگان بیشتری قرار می‌گیرد. سفارشی‌سازی در تولید انبوه، توانایی تولید محصول یا خدمات مختص هر مشتری بر اساس سفارش یا نیازهای شناخته شده او از طریق یک فرایند کاملاً انعطاف‌پذیر و یکپارچه با حفظ مزایای تولید انبوه است. سفارشی‌سازی در تولید انبوه یکی از فرصت‌هایی است که از طریق رشد و هماهنگی تکنولوژی‌های تولید و تکنولوژی اطلاعات در اختیار تولیدکنندگان قرار گرفته است.
واضح است فعالیت‌هایی که در سیستم‌های سفارشی‌سازی در تولید انبوه انجام می‌شوند نیازمند همکاری گسترده، تبادل اطلاعات و تعامل در محدوده سازمان و خارج از آن است. بخشی از این تعامل در جهت برنامه‌ریزی تخصیص وظایف به منابع و زمان‌بندی اجرای وظایف بر روی منابع است. مسئله برنامه ­ریزی تخصیص وظایف به منابع و زمانبندی اجرای وظایف یکی از پیچیده­ترین مسائل بهینه­سازی ترکیبیاتی به­شمار می ­آید که در این تحقیق سعی بر آن است که گسترشی در زمینه حل این دسته مسائل حاصل گردد.
در سیستم‌های سفارشی‌سازی در تولید انبوه، از آنجایی که هر کالای تولید شده دارای شرایط خاص خود، براساس نیاز اعلام شده مشتری خواهد بود، مسئله هماهنگی و تعامل اجزا در صحن کارخانه شکل پیچیده­تری به‌خود می‌گیرد. برای حل مسئله برنامه ­ریزی در چنین شرایطی اجزای سیستم برنامه‌ریزی باید دارای ویژگی‌هایی همچون برقراری ارتباط با اجزای دیگر، واکنشی بودن و خودمختاری باشند. با توجه به این ویژگی‌ها بهره‌گیری از سیستم‌های تکاملی چندعاملی بعنوان یکی از راه ‌حل ‌های مناسب مطرح می‌گردد. در این روش با بهره‌گیری از اجتماعی از عامل‌ها که هر کدام دارای مجموعه‌ای از خصوصیات و منابع می‌باشند می‌توان راه ‌حل ‌هایی در محیط محاسباتی پویا بدست آورد.
 

 

1-2- نوآوری­های تحقیق

 

در این تحقیق با توجه به پیشینه تحقیقاتی که در زمینه حل مسئله برنامه ­ریزی و زمانبندی کار کارگاهی منعطف صورت گرفته است، الگویی جدید و مؤثر برای مدل­سازی فضای جواب مسئله مطرح می­گردد. الگوی ارائه شده، دارای خصوصیات ویژه­ای است که از جمله مهم­ترین آن­ها می­توان به حل همزمان زیر مسئله­های برنامه ­ریزی تخصیص وظایف به منابع و زمانبندی ترتیب اجرای وظایف، اشاره کرد. در ادامه پژوهش به معرفی الگوریتم بهینه­سازی حرکت جمعی ذرات پرداخته می­ شود و شکل جدیدی از این الگوریتم برای حل مسائل بهینه­سازی چندهدفه، معرفی می­گردد که در آن انتخاب ذرات راهنما براساس چگالی ذرات در فضای اهداف صورت می­گیرد، سپس الگوریتم ارائه شده با یکی از الگوریتم­های مشابه مقایسه می­ شود. بعد از آن، دو ایده ارائه شده، در حل مسئله  زمانبندی کار کارگاهی منعطف به­کار گرفته شده و نتایج آن مورد بررسی قرار خواهند گرفت.
 

 

1-3- ساختار پایان نامه

دانلود مقاله و پایان نامه

 

 

در ادامه مطالب پایان نامه ، در فصل دوم مفاهیم سفارشی‌سازی انبوه و سطوح پیاده‌سازی آن ارائه خواهد شد و  فاکتورهایی که منجر به پیاده‌سازی موفق آن می‌شوند از دیدگاه نویسندگان و محققین مختلف مورد بررسی قرار می‌گیرند و مسئله برنامه ­ریزی و زمانبندی تولید برای حصول به سفارشی­سازی در تولید انبوه به مسئله برنامه ­ریزی و زمانبندی کارگاه تولید منعطف[2]  با چند هدف، کاهش[3] می­یابد. از اینجا به بعد رویكرد پژوهش به سوی حل مسئله زمانبندی چندهدفه در کار کارگاهی منعطف، خواهد بود. در فصل سوم، مفاهیم زمانبندی کارگاهی مطرح شده و با بهره گرفتن از آن­ها یک مدل ریاضی مناسب برای مسئله زمانبندی کار کارگاهی منعطف بدست می­آید. در ادامه پایان نامه در فصل چهارم مروری کوتاه به مفهوم فرااکتشاف[4] و کاربرد آن در مسائل بهینه­سازی انجام می­گردد. در این فصل چند روش فرااکتشافی مهم که در بهینه­سازی به­ طور گسترده­ای مورد استفاده قرار می­گیرند در قالب سه دسته معرفی می­شوند. در فصل پنجم روش های بهینه­سازی چندهدفه با تکیه بر الگوریتم بهینه­سازی حرکت جمعی ذرات[5] بعنوان یک روش تکاملی[6] چندعاملی[7] مورد مطالعه قرار می­گیرد و الگوریتم جدیدی مبتنی بر چگالی هسته[8] ذرات در فضای اهداف، ارائه شده و با یکی از الگوریتم­های بهینه­سازی چندهدفه مبتنی بر حرکت جمعی ذرات مقایسه می­گردد. در فصل ششم، ابتدا نمایش جدیدی از فضای جستجوی مسئله زمانبندی کار کارگاهی منعطف معرفی می­گردد که قابلیت حل زیرمسئله­های تخصیص عملیات به ماشین­ها و زمانبندی ترتیب اجرای عملیات را بطور همزمان بدست می­دهد. سپس در ادامه این فصل، الگوریتم بهینه­سازی که در فصل پنجم معرفی شده است برای حل مسئله زمانبندی کار کارگاهی منعطف مورد استفاده قرار گرفته و نتایج آن با روش­های دیگر مقایسه می­ شود. در نهایت در فصل هفتم به بحث و نتیجه ­گیری درباره نتایج تحقیق انجام شده در این پایان نامه پرداخته و پیشنهاداتی برای گسترش تحقیقات در این زمینه، ارائه می­ شود

 

پیشرفت‌های اخیر در تولید منعطف و تكنولوژی اطلاعات، كه سیستم­های تولید را قادر به ارائه طیف وسیع­تری از محصولات با هزینه پایین‌تر می‌كنند، كوتاه شدن چرخه عمر محصول، و رقابت صنعتی فزاینده‌ای كه نیاز به استراتژی‌های تولیدی كه به نیازهای یكایک مشتریان توجه می‌كنند منجر به ظهور سفارشی‌سازی در تولید انبوه گردید.
یكی از اولین افرادی كه صحبت از سفارشی‌سازی در تولید انبوه را مطرح كرد آلوین تافلر بود. آلوین تافلر کار خود را به عنوان یک روزنامه نگار شروع کرد ولی با انتشار اولین کتاب خود به نام “ضربه آینده” [1] در سال 1970 به شهرت بین‌المللی رسید. “موج سوم” [2] ده سال بعد و “انتقال قدرت” [3] ده سال پس از آن منتشر شدند. منظور از موج سوم که در عنوان کتاب به آن اشاره شده، جامعه فوق صنعتی است که در اواخر قرن بیستم ظهور کرده و هنوز هم در حال شکل‌گیری است. این جامعه بعد از موج دوم، یعنی جامعه صنعتی به وجود آمد که خود ناشی از انقلاب صنعتی بود. جامعه صنعتی هم بعد از مرحله کشاورزی به وجود آمد که به عنوان موج اول شناخته شده است. هر موج جدید توسط توسعه فنآوری جدیدی ظاهر شد. بالاخره فنآوری الکترونیک موج سوم را به وجود آورد. توجه اصلی تافلر انتقال از موج دوم به موج سوم در جوامع پیشرفته است، گو اینکه البته حوزه احتمالی اصطکاک بین انسان‌هایی که در مراحل مختلف پیشرفت (شرایط امواج مختلف) قرار دارند و با هم همزیستی می‌کنند را نیز مورد بررسی قرار می‌دهد. به نظر تافلر، صفت مشخصه موج سوم به جای تولید انبوه، سفارشی سازی انبوه است.
وقتی به تاریخچه یا سوابق شركت‏های خودروساز مطرح نگاه می‏كنیم، می‏بینیم كه آن­ها نیز همین راه­بردها را به كار گرفته‏اند. آن‌ ها در دوره‏ای، به تولید انبوه می‏پرداختند بعد از آن تولید ناب باب شد و اكنون در دوره‏ای هستیم كه تولید انبوه براساس نیاز و سلیقه مردم یا سفارشی­سازی در تولید انبوه اهمیت پیدا كرده است. انجام چنین كاری یعنی تولید براساس سفارش مشتری ـ آن هم با همه مزایای تولید انبوه ـ فقط زمانی ممكن است كه ابزارهای آن فراهم باشد.
مفهوم سفارشی‌سازی در تولید انبوه بطور رسمی تقریباً از اواخر دهه 1980 معرفی گردید و ادامه منطقی توسعه و پیشرفت در زمینه‌های مختلف تولید مانند تولید منعطف و بهینه‌سازی شده براساس كیفیت و قیمت است. طبق تعریفی كه دیویس[1] در 1989 ارائه نمود [4]، سفارشی‌سازی در تولید انبوه عبارت از فراهم­سازی محصولات یا سرویس‌های اختصاصی برای یک مشتری از طریق چابكی بالا در فرایند، انعطاف‌پذیری و یك­پارچگی در سیستم تولید است.
بسیاری از نویسندگان این مفهوم را بصورت باریك‌تر و عملی‌تری مورد توجه قرار داده‌اند و تعریف دیگری را ارائه كرده‌اند. آنان معتقدند كه سفارشی‌سازی در تولید انبوه، استفاده از تكنولوژی اطلاعات، فرایندهای انعطاف­پذیر و معماری سازمانی ویژه برای ارائه كردن طیف وسیعی از محصولات و سرویس‌هایی كه به نیازهای مخصوص هر كدام از مشتریان پاسخ می‌دهد (اغلب از طریق مجموعه‌ای از انتخاب‌ها) با هزینه‌ای نزدیک به تولید انبوه است [5].
در هر دو این دیدگاه‌ها سفارشی‌سازی در تولید انبوه بعنوان یک ایده سیستماتیك، همه جنبه‌های فروش محصول، توسعه، تولید و ارائه آن و بطور كلی زنجیره كاملی از انتخاب مشتری تا تحویل محصول را در بر می‌گیرد.
با وجود مشكلات زیاد پیاده‌سازی سیستم‌های تولید مبتنی بر سفارشی‌سازی در تولید انبوه، مشكلات زیر به­نظر اساسی‌تر جلوه می­كنند: الف) پایین نگه داشتن قیمت محصول سفارشی‌سازی شده متناسب با تولید انبوه محصول استاندارد. ب) دست­یابی به كیفیت بالا برای طیف وسیعی از محصولات و پ) ارتقا و تولید كالاهای سفارشی بصورت دوره‌ای برای جلب رضایتمندی مشتری و تمایل او برای سفارش محصولات جدیدتر. بنابراین سازمان‌های تولیدی برای پیاده‌سازی سیستم‌های مبتنی بر سفارشی‌سازی در تولید انبوه باید توانایی انجام تغییراتی همچون موارد زیر را داشته باشند: الف) پیمانه‌ای‌سازی محصولات و فرایندها برای ایجاد قابلیت مدیریت تنوع محصولات ب) استفاده از سیستم‌های نرم‌افزاری مبتنی بر دانش[2] و پ) استفاده از سیستم‌های تولید و اتوماسیون منعطف.
بنابر موارد ذكر شده، تغییر سیستم تولیدی سازمان به سیستم  مبتنی بر سفارشی‌سازی در تولید انبوه پیامدهای بسیاری را در توسعه محصول و چرخه تولید ایجاد خواهد نمود. این پیامدها را می‌توان در قالب توانمندی در حوزه‌های محاسباتی[3]، ارتباطی[4] و اطلاعاتی[5] دسته‌بندی كرد كه موجب بروز نوآوری‌هایی در اتوماسیون منعطف، شبكه‌های كامپیوتری صنعتی و طراحی محصول بصورت الكترونیكی می‌شوند.

پایان نامه ارشد : شبیه سازی پدیده ی کشش سطحی دینامیکی در سیستم های نفت-حلال بر اساس فرآیند نفوذ

 
مطالات اخیر نشان می­دهد که فرایند نفوذ مولکولی یک گاز مثل دی اکسید کربن، نقشی اساسی در فرایندهای استحصال نفتی بازی می­ کند. بنابراین مطالعه­ انتقال جرم در سیستم­های گاز-نفت، در شرایط دمایی و فشاری مخزن ضروری به نظر می­رسد ]4-1[.
از نظر فیزیکی، فرایند نفوذ مولکولی گاز در نفت طی سه مرحله صورت می­گیرد. ابتدا گاز تزریقی به سمت مرز گاز-نفت حرکت کرده و سپس در مرز نفوذ می­ کند و در نهایت وارد فاز نفتی می­گردد. انتقال جرم گاز در نفت باعث می­ شود خصوصیات مرزی بین نفت خام و گاز تزریقی تغییر کند. در گذشته مطالعات زیادی برای تعیین پارامترهای انتقال جرم در  سیستم­های مختلف گاز-نفت ارائه شده است. یکی از این روش­­ها استفاده از تغییر کشش سطحی دینامیکی سیستم است ]5[.
کشش سطحی در مرز دو سیال، نتیجه­ انرژی اضافه­ای است که در اثر نیروهای بین مولکولی اشباع نشده در سطح به وجود می ­آید ]6[. این پارامتر با روش­های گوناگونی قابل اندازه ­گیری است که در فصل دوم به طور کامل در مورد آنها توضیح داده شده است.
طبق بررسی­های به عمل آمده، کشش سطحی احتمالا مهم­ترین عاملی است که سبب می­ شود حدود یک­ سوم نفت درجا، پس از سیلاب­زنی با آب یا رانش با گاز، به صورت غیر قابل استحصال در بیاید ]8[.
از طرف دیگر مطالعه­ کشش سطحی در فرایندهای ازدیاد برداشت به روش سیلاب زنی با حلال اهمیت ویژه­ای می­یابد. یک حلال می تواند با تزریق به مخزن نفت را جا­به­جا کند. این تزریق می ­تواند سبب جابجایی امتزاج پذیر (تک فازی) یا امتزاج ناپذیر (دو فازی) گردد ]7[.
مکانیزم های موثر در جا­به­جایی نفت به وسیله حلال عبارتند:
استخراج اجزای سبک[1](و حتی متوسط) نفت به وسیله­ سیال
کاهش کشش سطحی بین حلال و نفت و کاهش ویسکوزیته نفت از طریق حل شدن حلال در نفت[2]

 

  1. متورم شدن نفت از طریق نفوذ حلال درون نفت[3]

از بین روش­های موجود برای اندازه ­گیری کشش سطحی، روش قطره معلق[4]، در دما و فشار بالا کاربرد بیشتری یافته است.
در این تحقیق، با بهره گرفتن از داده ­های آزمایشگاهی کشش سطحی تعادلی و دینامیک، برای سیستم­های گاز- نرمال پارافین، دو نوع مدل انتقال جرمی مختلف بر روی سیستم قطره­ی معلق بررسی، و روشی که نتایج آن منطبق بر نتایج آزمایشگاهی می­ شود به عنوان مدل اصلی انتقال جرم معرفی ­گردید. همین طور نحوه­ تاثیر دما، فشار، زمان و نوع مواد شرکت کننده در فرایند، روی پروسه­ی انتقال جرم تعیین گردید.

 

فصل دوم

 

 
 
2- مبانی تحقیق

دانلود مقاله و پایان نامه

 

 
 
در این فصل و فصل بعدی، توضیحاتی در مورد واژه­ های کلیدی موجود در عنوان پایان نامه داده خواهد شد. در ابتدا به تعریف کشش سطحی و روش­های اندازه گیری آن می­پردازیم.
 
 
2-1- کشش سطحی تعادلی و روش­های اندازه گیری آن
 
در درون یک فاز مایع، مولکول­ها به طور کامل توسط مولکول­های دیگر محاط می­شوند، به طوری که نیروی جذب در همه­ی جهت­ها یکسان است. اما در مرز، نیروهای بین مولکولی از یک جنس نیستند و در نتیجه همدیگر را خنثی نمی­ کنند.این بر هم کنش سبب به وجود آمدن نیرویی به سمت داخل می­گردد. این پدیده دقیقا همان عاملی است که سبب می­گردد قطرات کوچک، شکل کروی به خود بگیرند. بنابراین می­توان گفت کشش سطحی[5] عبارت است از تمایل سطح به انقباض، برای حداقل کردن مساحت بین سطحی ]9[.
از نظر فیزیکی، برای کشیدن یک فیلم صابون روی یک قاب سیمی شکل، بایستی نیرویی به اندازه­ F وارد شود تا از پارگی فیلم جلوگیری گردد. اگر فیلم به اندازه­ dx جابجا شود، انرژی  آن به اندازه­ Fdx بالا می­رود. اگر سیستم در حالت تعادل باشد، این تغییر انرژی بایستی دقیقا برابر با انرژی آزاد سطح گردد، یا به عبارتی
معادله (2-1) را می­­توان به صورت زیر ساده نمود
این عبارت دقیقا معادل با کاری است که بایستی انجام شود تا مساحت سطح مایع را افزایش دهد و باعث شود سطح مایع، مانند یک پوست کشیده شده عمل کند که در اصطلاح علمی به آن کشش سطحی گفته می­ شود
هر چند در صنایع نفت و گاز کاهش کشش سطحی بین نفت خام و سیال تزریقی باعث افزایش تولید می­گردد، اما در مواردی مانند صنعت روغن خوراکی تلاش­ها برای افزایش کشش سطحی صورت می­گیرد تا با جذب کمتر این مواد، ضرر کمتری متوجه بدن گردد ]11[.
در چند دهه­ گذشته روش­های مختلفی برای اندازه ­گیری کشش سطحی بین مواد مختلف ارائه شده است. درلیخ و همکارانش، روش­های اندازه ­گیری کشش سطحی را به پنج دسته­ی کلی تقسیم بندی کردند که عبارتند از:
اندازه ­گیری مستقیم با بهره گرفتن از یک میکروبالانس که شامل روش صفحه­ی ویلهلمیوحلقه­ی دوندیا می­باشد.
اندازه ­گیری فشار موئینه که شامل روش­های بیشترین فشار حباب و رشد قطره می­باشد.
آنالیز تعادل بین نیروهای گرانش و موئینه شامل روش­های حجم قطره و بالا رفتن در لوله­ی موئین.
آنالیز قطره­های منحرف شده بر اثر گرانش شامل قطره معلق و قطره چسبیده.
روش انحراف قطره تقویت شده شامل روش چرخش قطره و میکروپیپت ]6[.
 
 
2-1-1- دسته­ی اول: اندازه گیری با بهره گرفتن از یک میکروبالانس
 
برای اندازه ­گیری مستقیم کشش سطحی با بهره گرفتن از یک میکروبالانس، یک صفحه، حلقه، یا هر وسیله­ ساده­ی دیگر، در تماس با مرز دو سیال قرار می­گیرد. اگر میکروبالانس به طور کامل با یکی از این سیالات تر شده باشد، مایع به وسیله می­چسبد و در نتیجه­ نیروی مویینگی از آن بالا می­رود و باعث افزایش مساحت مرزی شده و نیرویی ایجاد می­ نماید که سعی می­ کند صفحه را به طرف مرز بکشد. این نیرو مستقیما با کشش سطحی ارتباط پیدا می­ کند و می ­تواند به وسیله­ میکروبالانس اندازه ­گیری شود. این نیرو به صورت معادله­ (3-1) در کشش سطحی تاثیر می­گذارد.

دانلود پایان نامه ارشد : شبیه سازی عددی جریان جابه جایی اجباری نانوسیال غیرنیوتنی در میکرولوله


تقاضای رو به رشد برای کوچک‌سازی محصولات در تمام بخش‌های صنعتی، با رقابت جهانی برای اطمینان بیشتر، سرعت بیشتر و محصولات مقرون‌به‌صرفه همراه شده است و منجر به چالش‌های جدیدی برای طراحی و بهره ­برداری سیستم‌های مدیریت حرارتی شده است. افزایش سریع در تعداد ترانزیستورها بر روی تراشه، با افزایش قابلیت یا قدرت و درنتیجه شار حرارتی بالاتر، یکی از این چالش بزرگ در صنعت الکترونیک است. تکنولوژی­های مبدل حرارت و مبدل جرم میکروکانال در حال پیدا کردن کاربردهای جدید در صنایع گوناگون به‌عنوان یک راه­حل امیدوار­کننده برای تغییر تکنولوژی­ها است. در این راه ما نسل بعدی سیستم‌های مدیریت حرارتی با کارایی بالا را طراحی و راه‌اندازی می­کنیم. در این فصل با اصول میکروکانال­ها برخورد خواهیم کرد. با معرفی تاریخچه، زمینه‌های فنی، طبقه‌بندی، مزایا و معایب میکروکانال­ها شروع می­کنیم. روش ساخت (تکنولوژی متداول و تکنولوژی مدرن) برای میکروکانال­ها در کنار هم در نظر گرفته می­ شود. در نهایت، ارتباط افت فشار و ضریب انتقال حرارت برای جریان تک فاز برای انواع شرایط جریان داخلی ارائه خواهد شد.
 
1-4-2 تاریخچه میکروکانال­­ها
کارهای زیادی برای انتقال حرارت تک فاز در میکروکانال‌ها توسط تاکرمن[6] و پیز[7] [3] برای خنک‌سازی مدارات یکپارچه در مقیاس بسیار بزرگ (VLSI)[8] انجام شد. در سال­های اول تاکرمن و پیز [3] اولین توضیح را برای بیان مفهوم چاه حرارتی میکروکانال دادند و پیش‌بینی کردند که خنک­کاری جابه‌جایی اجباری تک فاز در میکروکانال‌ها می‌تواند ۱۰۰۰ وات بر مترمربع حرارت را حذف کند. جابه‌جایی اجباری در کانال و تزریق مایع برای خنک کاری سریع‌تر و در مقیاس بزرگ‌تر در صنعت برای چند دهه استفاده شد. انتقال حرارت میکروکانال، در مقایسه با هوای معمولی و مایع سیستم­های سرد دارای ضریب انتقال حرارت بالا، همراه با پتانسیل بالا برای ضریب انتقال حرارت و افت فشار متوسط می­باشد. انتقال حرارت میکروکانال، به پدیده‌ای محبوب و جالب برای پژوهشگران تبدیل شده است. به‌عنوان مثال، برای خنک کاری چاه حرارتی میکروکانال باقدرت بالا با آرایش دیود لیزری حذف شار حرارت ۵۰۰ وات بر مترمربع اثبات شده است. در چند دهه گذشته، مطالعات انجام‌شده روی جریان دو فازی و ویژگی‌های انتقال حرارت در جریان میکروکانال، به توسعه سریع میکرو­دستگاه‌های مورد استفاده برای کاربردهای مهندسی مختلف مانند دستگاه‌های پزشکی، مبدل‌های حرارتی فشرده با شار حرارت بالا، خنک کاری میکروالکترونیک با چگالی قدرت، ابررایانه‌ها، پلاسما و لیزرهای قوی و … منجر شده است.
 
1-4-3 معرفی میکروکانال­ها
در اغلب موارد خنک­کاری موردنیاز بیش از ۱۰۰ وات بر مترمربع است که به‌راحتی نمی‌توان با سیستم­های ساده خنک­کاری هوا و یا خنک­کاری آب، خنک کاری را انجام داد. در بسیاری از کاربردها، به دلیل دفع شار حرارت بالا از اجزا، چاه حرارتی موردنیاز باید بزرگ‌تر از اجزای خود باشد. بااین‌وجود، نقاط داغ معمولا ظاهر می‌شود و سطوح غیریکنواخت شار حرارت در سطح چاه حرارتی مشاهده می­ شود. محققان چاه حرارتی جدیدی را توسعه دادند که می‌تواند به‌طور مستقیم در پشت منبع حرارت برای حذف شار گرمایی یکنواخت جاسازی شود. از قانون سرمایش نیوتن می‌دانیم که برای یک اختلاف دما ثابت، شار گرما به حاصل hA بستگی دارد که در آن h ضریب انتقال حرارت است و

دانلود مقاله و پایان نامه

 A مساحت سطح انتقال حرارت است. بنابراین، در راستای تحقق نیاز به دفع شار حرارت بالا، حاصل hA افزایش می­یابد و ازآنجاکه ضریب انتقال حرارت h به قطر هیدرولیک مرتبط است، افزایش سطح نیز یک گزینه است. سطح انتقال حرارت را می‌توان با بهره گرفتن از میکروکانال‌ها در بدنه (سطح تراشه)، محصول افزایش داد. رفتار جریان آب در داخل کانال توسط قطر هیدرولیکی کانال و سطح مقطع کانال تعیین می­­شود. برای دست‌یابی به انتقال حرارت بالا، قطر هیدرولیکی کوچک‌تر و سطح انتقال حرارت بزرگ‌تر کانال ترجیح داده می‌شود، بنابراین کانال‌های متعدد تنگ با عمق بالا مناسب می‌باشد. قطر هیدرولیکی کوچک و سطح مقطع گسترده‌تر باعث افزایش افت فشار و درنتیجه نیاز قدرت پمپاژ بیشتر است. از سوی دیگر، افزایش سطح مقطع سطح گرم، نرخ انتقال حرارت را افزایش می­دهد. این شرایط را می‌توان با نسل آینده میکروکانال‌ها که دارای قطر هیدرولیکی بزرگ‌تر، سطح مقطع بزرگ‌تر و همچنین ضریب انتقال حرارت بالاتر است، تنظیم کرد.

 
1-4-4 طبقه‌بندی میکروکانال­ها و مینی­کانال­ها
میکروکانال‌ها را به روش‌های مختلف می‌توان طبقه‌بندی کرد. برخی از محققین معیارهای مختلف برای مینی­کانال­ها در مقابل میکروکانال‌ها پیشنهاد کرده‌اند. ساو[9] و گریف[10] [4] یک معیار برای طبقه‌بندی میکروکانال‌ها پیشنهاد کردند به شرح زیر است:
l≥dh باشد که l ثابت لاپلاس و dh قطر کانال است.
مهندل[11] و همکاران [5] از قطر هیدرولیکی برای طبقه‌بندی میکرو مبدل حرارتی استفاده کردند که به شرح زیر است،

 

 

 

 

 

 

 

 

 

 

 

 

مبدل حرارتی مقیاس میکرو: 1 mm ≤ d≤ 100 mm
مبدل حرارتی مقیاس مزو: 100 mm ≤ d≤ 1 mm
مبدل حرارتی فشرده: 1 mm ≤ d≤ 6 mm
مبدل حرارتی متداول: d> 6 mm

کاندلیکار[12] [6] یک طبقه‌بندی میکروکانال برای تک فاز همانند دو فاز پیشنهاد داد که به صورت زیر است،

 

 

 

 

 

 

 

 

 

کانال­های متداول: d> 3 mm
مینی­کانال­ها: 200 mm ≤ d≤ 3mm
میکروکانال­ها: 10 mm ≤ d≤ 200 mm

پالم[13] [7] یک تعریف کلی­تر از میکروکانال‌ها ارائه داد که آن‌ ها را به‌عنوان المان­های انتقال حرارت توصیف کرد که در آن تئوری­های کلاسیک به‌درستی نمی‌تواند ضریب اصطکاک و انتقال حرارت را پیش‌بینی کند. استفان[14] یک میکرو سیستم تعریف کرد که در آن پدیده‌های معمول یک سیستم ماکرو وجود ندارد. بنابراین برای تمایز مینی و میکروکانال­ها با قطر خاص مانند قطر هیدرولیکی از ۱ میلی‌متر همیشه مفید نیست، اگرچه این تعریف اغلب استفاده می‌شود.
 
1-4-5 مزایا و چالش­های میکروکانال­ها
جریان در میکروکانال­ها، در دو دهه گذشته به‌طور گسترده­ای مورد بررسی بوده است این بررسی­ها برای خنک‌سازی مؤثر و سریع­تر دستگاه­های الکترونیکی با چگالی قدرت بالا بوده است. ضریب انتقال حرارت بالای نهفته در میکروکانال­ها، توانایی کاهش اندازه مبدل‌های حرارتی به‌طور قابل‌توجه را دارد. از دیگر مزایای میکروکانال­ها کاهش وزن، حجم کم و کاهش استفاده از مواد می­باشد. کاهش قطر میکروکانالها در بیشتر مبدل‌های حرارتی فشرده باعث افزایش ضریب انتقال حرارت به‌واسطه سطح وسیع‌تر در واحد حجم می‌شود. میکروکانال­ها کاربردهای گسترده عملی در زمینه‌های بسیار تخصصی، ازجمله مهندسی زیست و سیستم­های جریانی میکرو ساخت[15]، میکروپمپ­ها و میکرولوله­های حرارتی دارند. به‌عنوان مثال، تراکم و وزن پایین میکروکانال­ها، صنعت خودرو را دگرگون کرد. مبدل‌های حرارتی کوچک و میکروکانال­ها، امروز جایگزین لوله­های مدور در کندانسورهای خودرو و مبدل‌های حرارتی با قطر هیدرولیک در حدود ۱ میلی‌متر شده است. اخیرا، میکروکانال­ها با موفقیت در سیستم­های تهویه مطبوع خودرو، سلول‌های سوختی و میکروالکترونیک اعمال‌شده‌اند. چالش اصلی میکروکانال­ها، مشکلات ساخت و فیلتر کردن سیال عامل با درجه بالا، برای آن‌که از طریق کانال‌ها جریان یابد. افت فشار بالا و توان پمپاژ موردنیاز نیز از چالش‌های میکروکانال­ها در نظر گرفته می­ شود.
 
1-4-6 روش‌های ساخت میکروکانال­ها
میکروکانال­ها توسط انواع فرایندها، بسته به ابعاد و مواد استفاده‌شده در آن‌ ها ساخته می­شوند. مواد رایج مورد استفاده برای میکروکانال­ها سیلیکون، سیلیس، پلی کربنات، پلیمیدها، پلاستیک و یا فلز هستند. میکروکانال­ها، دارای مقاطع مستطیل، نیم‌دایره، مثلث و یا ذوزنقه­ای هستند که به‌طور گسترده در متون گزارش‌شده و توسط نگوین[16] و ورلی[17] [8] خلاصه شده است

دانلود پایان نامه : شبیه سازی عددی جریان نانوسیال‌ غیرنیوتنی در میكروكانال

یکی از راه‌های بهبود فرایند انتقال حرارت در مبدل‌های حرارتی، افزودن موادی با ضریب هدایت حرارتی بالا به سیال است. محققان سال‌ها بر روی استفاده از مخلوط ذرات جامد معلق بسیار کوچک در ابعاد میکرو در سیال برای بهبود انتقال حرارت کار کردند. اما این سیالات مشکلات فراوانی مانند رسوب گذاری، ناخالصی، خوردگی و افزایش افت فشار و… داشته اند تا اینکه در سال 1881 ایده استفاده از ذرات برای اولین بار توسط ماکسول [2] مطرح شد و انقلاب بزرگی در زمینه انتقال حرارت در سیالات پدید آمد. در واقع او دیدگاه تازه­ای را در مورد سوسپانسیون سیال جامد با ذراتی در ابعاد نانو مطرح کرد. اولین بار ماسودا و همکاران [‎5] این سیال حاوی ذرات معلق را با نام ” نانوسیال” معرفی کردند و بعد از آنها چوی [‎6] در آزمایشگاه آرگون آمریکا این مفهوم را به طور گسترده‌ای توسعه داد.
نانوسیال عبارت است از ذرات بسیار ریز جامد در ابعاد بین 1 تا 100 نانومتر معلق در یک سیال پایه. بطور معمول نانوذرات از جنس فلزاتی مانند مس، آلومینیوم، پتاسیم، سیلیسیم و اکسیدهای آن­ها و همچنین نانولوله‌های کربن و سیالات پایه نیز عمدتا از سیالات با رسانایی نسبتاً پایین‌تر مانند آب، اتیلن گلیکول و سیالاتی از این دسته که در صنعت به عنوان‌ هادی انتقال حرارت مورد استفاده قرار می­گیرند، می­باشند. نانوذرات نسبت به ذرات بزرگتر مانند میکروذرات، بسیار پایدارتر بوده و سطح تماس بیشتری با ناحیه سیال دارند. در واقع دو مشخصه اصلی نانوسیال یکی پایداری بسیار زیاد و دیگری ضریب هدایت حرارتی بسیار بالای آن است. همچنین به دلیل کوچک بودن ذرات، تا حد زیادی مشکلات خوردگی و افت فشار کاهش پیدا می‌کند و همچنین پایداری برخی سیالات در مقابل رسوب­گذاری بطور چشم­گیری بهبود می‌یابد.
2-1  كاربردهای نانوسیال   
از نانوسیال می‌توان برای بهبود انتقال حرارت و افزایش راندمان در سیستم‌های مختلف انرژی همانند خنک‌کاری اتومبیل‌ها و موارد مشابه استفاده كرد. در حال حاضر تعداد مؤسسات صنعتی و تحقیقاتی كه در حال بررسی استفاده از نانوسیال در محصولات خود هستند در حال افزایش است. در مورد زمینه‌های مختلف كاربرد نانوسیال، چه آنان كه بصورت بالقوه وجود دارند و چه آنهایی كه بصورت بالفعل در آمده‌اند، بطور مختصر می‌توان به کاربردهای آن در صنعت حمل و نقل، خنک کاری صنعتی،  رئوکتورهای اتمی، استخراج انرژی از منابع گرمایی و دیگر منابع انرژی، خنک کاری قطعات الکترونیکی، زمینه‌های نظامی، کاربردهای فضایی، زمینه‌های پزشکی و انتقال دارو نام برد. برای کسب اطلاعات کامل در زمینه تولید و کاربرد نانوسیالات می‌توانید به رامیار [‎7] مراجعه کنید.

 

2-2 پارامترهای تأثیرگذار بر ضریب هدایت حرارتی

 

نتایج اولیه تجربی از بررسی انتقال حرارت نانوسیال در کانال‌هایی با هندسه‌های مختلف، حاکی از بهبود شدید در ضریب هدایت حرارتی و به تبع آن، ضریب انتقال حرارت جابجایی بود. تحقیقات متعددی برای بررسی علت این رفتار غیر متعارف صورت گرفت و حتی برخی از مقالات در سال‌های اخیر این رفتار را رد کردند. عوامل مؤثر بر خواص انتقال حرارتی نانوسیال عبارتند از:
کسر حجمی، جنس نانوذرات، نوع سیال، اندازه نانوذرات، شکل نانوذرات، دما، حرکت براونی، خوشه‌ای شدن، لایه‌ای شدن در اطراف

دانلود مقاله و پایان نامه

 نانوذره، ترموفورسیس، دیفیوژئوفورسیس.

برای توضیحات بیشتر در مورد هر یک از این عوامل می‌توانید به رامیار [‎7] مراجعه فرمایید.

 

2-3 تعیین خواص نانوسیال

 

تاکنون محققان بسیاری در زمینه بدست آوردن خواص نانوسیالات پژوهش‌های متعددی انجام داده‌اند. در ‏جدول 2-1خواص برخی سیال‌ها و نانوذرات آورده شده است. در این پژوهش از نانوذره TiO2  استفاده شده است. همانطور که در قسمت قبل نیز اشاره شد، با توجه به تغییر غیر طبیعی خواص نانوسیال، بخصوص ضریب انتقال حرارت هدایتی و لزجت دینامیکی، تلاش‌های زیادی در جهت شناخت عواملی که منجر به این تغییرات می‌شوند و دستیابی به رابطه مناسب برای تعیین این خصوصیات صورت گرفته است. در این بخش به بررسی روابط استفاده شده در این پژوهش پرداخته می‌شود
گرمایش و سرمایش یک سیستم توسط سیال در بسیاری از صنایع مانند صنایع الکترونیک، نیروگاه­ها، دستگاه­های نوری، آهنرباهای ابر رسانا، کامپیوتر­های فوق سریع، موتور اتومبیل و … حائز اهمیت است. با توجه به طراحــی سیستم­های خنک‌کننده و گرمایشی بر پایه روش‌های مختلف انتقال حرارت و محدودیت منابع طبیعی و تمایل به کاهش هزینه­ها ، توسعه تکنیک­های موثر انتقال حرارت بسیار ضروری می­باشد. در این فصل بطور مختصر، برخی از اثرات و نتایج در ابعاد میکرو مورد بررسی قرار خواهد گرفت.

 

3-1 دلایل گرایش به ابعاد میکرو

 

فرایند انتقال حرارت به مساحت سطح دیواره بستگی دارد که برای هندسه دایروی با قطر لولهD   متناسب است، در حالیکه دبی حجمی سیال عبوری با سطح مقطع سیال متناسب است که بطور خطی با D2 تغییر می‌کند. بنابراین نسبت مساحت دیواره به حجم سیال که معیاری از نسبت گرمای دفع شده توسط کانال مورد نظر به دبی سیال عبوری یا حجم سیال موجود است و در طراحی مبدل‌های حرارتی بخصوص میکرو مبدل‌ها از اهمیت زیادی برخوردار است، با 1/D تغییر می‌کند. بنابراین با کاهش قطر، نسبت مساحت دیواره به حجم سیال و کارآیی حرارتی مبدل افزایش می‌یابد. بنابراین با کاهش قطر هیدرولیکی کانال، نسبت سطح به حجم آن و در نتیجه کارآیی حرارتی آن افزایش می‌یابد.

 

3-2 دسته‌بندی کانال‌ها از لحاظ ابعاد

 

معیارهای مختلفی برای دسته‌بندی کانال‌ها وجود دارد. همان‌طور که در بخش بعد خواهیم گفت، نتایج برخی تحقیقات حاکی از تغییر رفتار سیال در ابعاد کوچک است. در مورد این‌که آیا این تغییرات اصولاً وجود دارند یا این‌که در صورت وجود برای یک هندسه کانال خاص از چه قطر هیدرولیکی اتفاق می‌افتند، اختلاف وجود دارد، اما آنچه که در مورد آن توافق کلی وجود دارد، عدم تبعیت گاز از شرط عدم لغزش در دیواره کانال در ابعاد خیلی کو‌چک است. ‏جدول 3-1 دسته‌بندی کانال‌ها را از لحاظ ابعاد یا قطر هیدرولیکی نشان می‌دهد که با توجه به نتایج موجود، به نظر می‌رسد محدوده میکروکانال آن بر اساس لغزش سیال انتخاب شده است[‎7].
 
3-3  اثرات ابعادی در میکروکانال
با توجه به فرضیاتی که در رسیدن به معادلات حاکم بر جریان سیال در کانال‌هایی با ابعاد معمول از آنها استفاده می‌شود، همانند فرض جریان پایا و خواص ثابت سیال، به نظر می‌رسد که با تغییر ابعاد کانال، معادلات برقرار هستند. اما با دقت بیشتر مشاهده خواهد شد که برخی از فرضیات در ابعاد خیلی کوچک برقرار نیستند یا برخی موارد جدید باید درنظر گرفته شوند که بر معادلات حاکم تأثیر خواهند گذاشت. در این قسمت به بررسی اجمالی اثر ترم اتلاف لزجی، که در این پایان‌نامه مورد بررسی قرار گرفته است، بر شرایط فیزیکی جریان پرداخته خواهد شد. برای بررسی مفصل این اثرات می‌توانید به رامیار ]7[ مراجعه کنید.

 

3-3-1   اثر ورودی

 

عدد ناسلت در جریان آرام درون كانال‌ها، تنها برای جریان كاملاً توسعه‌یافته یعنی حالتی كه پروفیل سرعت و گرادیان دما بدون تغییر باقی بمانند، ثابت است. در ناحیه ورودی، پروفیل سرعت و دما در حال توسعه می‌باشند و عدد ناسلت تغییر می‌كند. در تئوری كلاسیک دینامیک سیال، دو طول ورودی حائز اهمیت هستند:
1- طول ورودی هیدرودینامیكی، Lh، كه بعد از آن پروفیل سرعت توسعه‌ یافته می‌شود.
2- طول ورودی دما Lt كه بعد از آن پروفیل دما توسعه یافته می‌شود.
هرگاه هیچ‌كدام از پروفیل‌های سرعت و دما توسعه ‌یافته نباشند، گفته می‌شود كه جریان به ‌طور همزمان در حال توسعه است، یعنی جریان در حال توسعه هیدرودینامیكی و گرمایی است.
هرگاه پروفیل سرعت توسعه یافته باشد و پروفیل دما در حال توسعه باشد، جریان را از لحاظ گرمایی در حال توسعه گویند كه در این حالت تنها طول ورودی گرمایی حائز اهمیت است.

 
مداحی های محرم