. 40
عنوان صفحه 3-1-2 بهبود پاسخ الکترود کربن شیشه ای توسط اصلاح با نانو کامپوزیت Pt/N-Gr 41
3-1-3 بررسی اثر غلظت هیدرازین در رفتار الکتروکاتالیزوری الکترود اصلاحشده با نانوکامپوزیت Pt/N-Gr 42
3-1-4 محاسبه حدتشخیص، حساسیت، و محدوده خطی الکترد اصلاحشده با بهره گرفتن ازروش آمپرومتری.. 43
3-1-5 بررسی میزان پایداری پاسخ الکتروکاتالیزوری الکترود GC-Pt/N-Gr برای اکسیداسیون هیدرازین. 46
3-1-6 بررسی اثر سرعت روبش پتانسیل. 47
3-1-7 بررسی انتخابپذیری الکترود اصلاحشده 48
3-1-8 کاربرد تجزیهای الکترود. 49
3-1-9 نتیجه گیری.. 52
بخش دوم: طراحی پیل زیست سوختی گلوکز/اکسیژن. 53
3-2-1 اکسیداسیون الکتروشیمیایی گلوکز با بهره گرفتن از الکترود کربن شیشه ای اصلاحشده با نانوذرات Fe-Pt 53
3-2-2 به کارگیری نانوکامپوزیت Pt/N-Gr برای احیای اکسیژن. 53
3-2-3 به کارگیری الکترود کربن شیشه ای اصلاحشده با نانوذرات Fe-Pt به عنوان آند پیل زیستی سوختی 54
3-2-3-1 بهبود پاسخ الکترود کربن شیشه ای اصلاح با نانو ذرات Fe-Pt نسبت به الکترود کربن شیشه ای اصلاحشده با کربن-پلاتین تجاری برای اکسیداسیون گلوکز. 54
3-2-3-2 بررسی اثر غلظت گلوکز در رفتار الکتروکاتالیزوری الکترود اصلاحشده با نانو ذرات Fe-P. 55
3-2-3-3 محاسبه سطح فعال آند (الکترود کربن شیشه ای اصلاحشده با نانوذرات Fe-Pt) 56
3-2-3-4 بررسی پایداری الکترود اصلاحشده با نانوذرات Fe-Pt 57
3-2-3-5 بررسی اثر مزاحمت اکسیژن برای اندازه گیری گلوکز در آند. 58
3-2-4 به کارگیری الکترود کربن شیشه ای اصلاحشده با/N-Gr Pt به عنوان کاتد پیل زیست سوختی 58
3-2-4-1 بهبود پاسخ الکترود کربن شیشه ای اصلاحشده با نانو کامپوزیت Pt/N-Gr نسبت به الکترود کربن شیشه ای اصلاحشده با کربن-پلاتین تجاری برای احیای اکسیژن. 58
3-2-4-2 محاسبه سطح فعال کاتد (الکترود کربن شیشه ای اصلاحشده با Pt/N-Gr) 60
3-2-4-3 بررسی مکانیسم احیای الکتروکاتالیزوری اکسیژن به روش ولتامتری هیدرودینامیک.. 61
3-2-4-4 بررسی پایداری الکترود اصلاحشده با Pt/N-Gr 62
3-2-5کاربرد آند و کاتد طراحی شده جهت ساخت پیل زیستسوختی گلوکز/ اکسیژن. 63
3-2-5-2 آماده سازی غشای نافیونی. 64
3-2-5-3 نتایج حاصل از بستن پیل گلوکز/ اکسیژن. 64
3-2-5-4 نتیجه گیری.. 67
1 الکتروشیمی تجزیه
الکتروشیمی تجزیهای، شاخهای از مجموعه وسیع شیمی تجزیه است که راههای تجزیهای مبتنی بر فرایندهای الکتروشیمیایی را مورد بررسی قرار میدهد. برگزیدگی واکنشهای الکتروشیمیایی و دقت بالایی که با آن میتوان پارامترهای مرتبط با این واکنشها را اندازه گرفت، روشهای الکتروشیمیایی تجزیه را در ردیف حساسترین و انتخابیترین روشهای تجزیهای تشخیص و تعیین مقدار قرار میدهد.
یکی از ویژگیهای کمنظیر روشهای الکتروشیمیایی تجزیهای، گسترش دامنه کارایی آنهاست، به طوریکه علاوه بر امکان کاربرد آنها به صورت روشهای مستقل، میتوان از آنها برای آشکارسازی نتایج بسیاری از پدیدههای فیزیکی و شیمیایی استفاده کرد. در حال حاضر، محدوده الکتروشیمی تجزیه از معدود روشهای کلاسیک نظیر پتانسیومتری، آمپرومتری، پلاروگرافی، هدایتسنجی و ترسیب الکتریکی فراتر رفته و روشهای جدیدتری که ثمره تلفیق اطلاعات الکتروشیمیایی با تکنولوژی مدرن الکترونیک است، به میان آمدهاند [1]. از نظر تاریخی کار در زمینه ولتامتری با کشف پلاروگرافی توسط شیمیدان اهل چکاسلواکی، ژروسلاو هیروسکی [1] در اوایل دهه 1920 آغاز شد. وی با انجام ولتامتری تجزیهای درسطح الکترود جیوه)پلاروگرافی) در این زمینه جایزه نوبل را دریافت کرد [2]. در سال 1964 طبقه بندی جالبی توسط نیکولسن[2] و شاین[3] با بهره گرفتن از نتایج حاصل از ولتامتری چرخهای[4] ( (CVو روبش خطی[5] (LSV) روی واکنشهای الکترودی صورت گرفت، به علاوه آنها ولتامتری چرخهای را شبیهسازی[6] کردند[3]. در سال1950 ولتامتری به صورت یک روش کاملا پیشرفته به نظر میآمد. به هر حال دهه 1955 تا 1965 شاهد بروز چندین روش اصلاحی اساسی از روش اولیه بود که به کمک آنها بر بسیاری از محدودیتهای روشهای اولیه غلبه شد. تقویتکننده های عملیاتی با قیمت کم، ابداع دستگاههای تجاری نسبتا ارزان را ممکن ساخت، که از این اصلاحات مهم بهره میگرفتند.
1-1-1 اهمیت و مزایای روشهای الکتروشیمیایی
روشهای الکتروشیمیایی در مقایسه با روشهای شیمیایی دارای مزیتهای ویژهای هستند که در زیر برخی از این مزایا بیان شده است:
C6H5NO2 + 4H+ + 4e– C6H5NHOH + H2O
حال آنکه اگر کاهش نیتروبنزن به طریق شیمیایی عملی شود، محصول واکنش آنیلین میباشد.
در مقایسه با روشهای طیفسنجی، دستگاههای مورد استفاده در الکتروشیمی ارزانتر هستند. یک آنالیز طیفسنجی تنها در مورد ملکولهایی می تواند انجام شود که دارای گروههای رنگساز باشند، در غیر این صورت باید مراحل زمانبر و پیچیده مشتقسازی آنالیت را
طی کرد. برخلاف روشهای طیفسنجی که اغلب در محلولهای همگن انجام می شود، واکنشهای الکتروشیمیایی در حد فاصل الکترود-محلول انجام میشوند. در اغلب روشهای طیفسنجی نیاز به تهیه محلولهای شفاف و همگن است درحالی که روشهای الکتروشیمیایی در محلولهای کدر نیز قابل اجرا هستند.
روشهای الکتروشیمی تجزیهای، تاثیر متقابل شیمی و الکتریسیته، یعنی اندازه گیری کمیتهای الکتریکی مانند پتانسیل، جریان، بار و ارتباط آنها را با پارامترهای شیمیایی شامل میشوند. چنین استفادهای از اندازه گیریهای الکتریکی برای اهداف تجزیهای، گستره وسیعی از کاربردها را به وجود میآورد که بررسیهای زیستمحیطی، کنترل کیفیت صنعتی و تجزیههای زیست پزشکی را در بر میگیرد.
در دهههای اخیر روشهای الكتروشیمیایی بسیار مورد توجه قرار گرفته است. این روشها در شیمی تجزیه كاربردهای فراوانی دارند از جمله:
الکترود به عنوان واسطه انتقال الکترون در واکنشهای الکتروشیمیایی ایفای نقش می کند. موفقیت یک حسگر الکتروشیمیایی، به انتخاب مناسب الکترودها بستگی دارد. یک الکترود ایدهال بایستی دارای ویژگیهایی همچون پایداری مکانیکی، غیرفعال بودن شیمیایی، محدوده وسیع پتانسیل کاری و سطح تکرارپذیر باشد.
استفاده از الکترودهای جامد بدون اصلاحگر[7] به تدریج باعث تغییراتی در سطح الکترود به علت جذب گونه های موجود در محلول و یا محصولات تولید شده از واکنشهای الکتروشیمیایی میگردد. این امر به تدریج موجب غیر فعال شدن سطح الکترود می شود که آن نیز به نوبه خود منجر به کاهش حساسیت و تکرارپذیری به علت ممانعت از انتقال بار میگردد. یکی از راههای فایق آمدن بر مشکلات مذکور استفاده از الکترودهای اصلاحشده میباشد.
1-2 الکترود
1-2-1 الکترودهای کربن
تاریخچه الکتروشیمی نشان میدهد که تا سال 1963 در فرایندهای الکتروشیمیایی تنها از الکترودهای فلزی مانند پلاتین، نقره، جیوه و… یا غیر فلزات رسانا مانند گرافیت استفاده شدهاست. مشکل عمده این الکترودها (به جز جیوه) عدم تکرارپذیری رفتار سطح الکترود و توانایی کم آنها در انجام انتخابی یکی از چند واکنش شیمیایی ممکن میباشد. امروزه با بهره گرفتن از اصلاحکننده های گوناگون توانایی در انتخاب الکترود مناسب برای تشخیص الکتروشیمیایی یک فرایند خاص یا دستهای از فرایندهای مشابه افزایش یافتهاست. از الکترودهایی که امروزه کاربرد فراوانی پیداکرده میتوان الکترودهای کربنی را نام برد. از عوامل گسترش کاربرد این الکترودها میتوان به هدایت الکتریکی خوب، مقاومت الکتریکی و جریانهای زمینه پایین، پنجره پتانسیل وسیع، قیمت پایین، سازگاری با بافتهای بیولوژیکی، بیاثر بودن شیمیایی، شیمی سطح غنی[8](از نظر امکان حضور گروههای عاملی مختلف(، ساختار تکرارپذیر سطح، قابلیت شکلدهی آسان و مناسب بودن آنها برای شناسایی گونه های متنوع اشاره کرد ]3[.
کربن به شکلهای مختلفی در الکتروشیمی کاربرد دارد. از مهمترین آنها میتوان کربن شیشه ای[9]، فیبرهای کربنی[10]، نانولولههای کربنی [11] و خمیرکربن [12] و الماس دوپهشده با بور[13]را نام برد.
1-2-1-1 الکترود کربن شیشه ای
این نوع الکترودهای جامد خواص مکانیکی و الکترونیکی خوبی دارند، از نظر شیمیایی بیاثرند و در روشهای الکتروشیمیایی پاسخهای نسبتاً تکرارپذیری را ارائه می کنند ]4[. ساختمان کربن شیشه ای شامل نوارهای ظریف در هم پیچیده متشکل از صفحات شبه گرافیتی با اتصال عرضی میباشد. مزیت اصلی این الکترودها اندازه کوچک آنهاست که در محیطهای با حجم کوچک مورد توجه قرار میگیرد، به عنوان مثال میتوان به تشخیص آزاد شدن انتقالدهندههای عصبی درفضای بیرون سلول مغز اشاره کرد ]5[.
الکترود کربن شیشه ای اولین بار توسط زیتل[14] و میلر[15] در الکتروشیمی مورد استفاده قرار گرفت. آنها نشان دادند که محدوده پتانسیل قابل استفاده در پتانسیلهای مثبت نسبت به الکترود پلاتین برای این نوع الکترود گسترش مییابد. این اختلاف شدید به خصوصیت پلاتین که پیوند کووالانس Pt-H را پایدار می کند، نسبت داده می شود. برای اصلاح این الکترودها از ایجاد گروههای کربونیلی یا کربوکسیلی بر سطح الکترود به وسیله گرما یا حرارت، برای اتصال انواع گروههای عاملی استفاده می شود.
خصلت مقاومت در برابر حملات شیمیایی استفاده از این الکترودها در محیطهای به شدت خورنده را ممکن ساخته است. برای بهدست آوردن سطوح مناسب، سطح الکترود بایستی با کاغذ سنباده و پودر آلومینا صیقل داده شود. الکترود آماده شده به این روش عاری از گروههای عاملی است. زمانی که الکترود در محلول قرار میگیرد، حملات شیمیایی و الکتروشیمیایی میتوانند روی سطح انجام شوند. اگر لازم باشد هیچ گروه اکسیژنداری در سطح نباشد، الکترود پس از صیقل دادن بایستی در اسیدهایی که خصلت اکسیدکنندگی ندارند، مانندHCl شسته شود. محلول باید عاری از اکسیدکننده باشد و در پتانسیل منفی نسبت به SCE نگه داشته شود، به محض مثبت شدن پتانسیل و یا ورود عوامل اکسنده گروههای کربونیلی یا کربوکسیلی در سطح ایجاد میشوند. روبش متعاقب آن در جهت منفی منجر به کاهش گروههای کربونیل و ایجاد گروههای هیدروکسیل می شود. هیچ عریانسازی از گروههای اکسیژندار انجام نمی شود و بنابراین تنها راه تمیز کردن سطح الکترود که یک بار اکسید شده، صیقل دادن مجدد آن است. الکترود آلوده شده به وسیله جذب سطحی واکنشدهندهها یا محصولات واکنش را میتوان با اتانول یا کلروفرم تمیز کرد. به علاوه در اینگونه موارد، استفاده از چند چرخه پلاریزاسیون توصیه می شود.
شکل1-1 مدل Jenkins-Kawamura کربن شیشه ای La و Lb طولهای ابعاد افقی و عمودی گرافیتی نسبت به محور c گرافیت
1-2-1-2 الکترودهای فیبرکربنی
الکترودهای فیبرکربنی از یک سری دستههای موازی رشتهای گرافیت ساخته میشوند. عمدهترین کاربرد این الکترودها در ساخت میکروالکترودهاست ]6 و 7[. موادی با چنین استحکام بالا از طریق تجزیهی حرارتی منسوجات پلیمری در دماهای بالا، از طریق لایه نشانی کاتالیزی بخار شیمیایی تهیه میشوند.
1-2-1-3 الکترودهای خمیرکربن
در سال 1958 آدامز [16] نوع جدیدی از الکترود را گزارش کرد که این الکترود از مخلوط کردن پودر گرافیت و یک مایع غیرالکتروفعال [17] به عنوان اتصالدهنده (خمیرکننده[18]) تشکیل میشد که آن را خمیرکربن نامیدند ]8[. ایده خمیرکربن همزمان با ایده پلاروگرافی ارائه شد و بعد از چندین سال ایده الکترود قطره چکان کربن ارائه شد]9[ که سوسپانسیونی از پودر کربن در یک مایع غیرفعال بود که به یک لوله کاپیلاری وصل میشد، این طراحی اجازه میداد الکترودها قابلیت تجدیدپذیری داشتهباشند. اگرچه ایده الکترود قطره چکان کربن با شکست مواجه شد اما الکترودهای خمیرکربن مورد توجه قرار گرفتند. اولین گزارش کاربردهای خمیرکربن درسالهای 1959-1963 ارائه شده اند. گروه تحقیقاتی آدامز ویژگیهای الکترود خمیر کربن را شناسایی و نحوه ساخت و استفاده از آن را بررسی کردند. آنها از الکترودهای خمیرکربن برای اولین بار برای مطالعه مکانیسم واکنشهای الکترودی برخی ترکیبات آلی استفادهکردند ]10[.
1-2-2 فعالسازی سطح الکترود و انواع آن
برای اصلاح سطح الکترود ابتدا لازم است تا سطح الکترود از نظر فیزیکی فعال شود که شامل پولیش دادن، فعالسازی حرارتی، فعالسازی با لیزر، فعالسازی با امواج صوتی– رادیویی و فعالسازی با حلال میباشد. سپس باید سطح الکترود از نظر شیمیایی اصلاح شود که شامل اصلاح سطح الکترود با بهره گرفتن از نانوساختارها، تک لایه های خود انباشته، و پلیمرها میباشد.
به اصلاح سطح الکترود با انجام پیش تیمارهای[19] مختلف که سبب افزایش فعالیت الکتروشیمیایی سطح الکترود می شود، در اصطلاح فعالسازی سطح الکترود گفته می شود ]11[.
1-2-2-1 پولیش دادن
سادهترین راه فعالسازی سطح الکترودهای کربنی است که در آن سطح الکترود را با بهره گرفتن از موادی مانند ذرات ریزآلومینا و یا ذرات الماس تمیز می کنند، نتیجه این کار حذف آلودگیها از سطح الکترود است که در اثر پولیش مناسب، یک سطح صاف وآینهای حاصل می شود، این کار موجب افزایش تکرارپذیری الکترود در طی واکنشهای اکسایش-کاهش میگردد.
1-2-2-2 فعالسازی حرارتی
فعالسازی حرارتی معمولا تحت خلأ انجام میگیرد. برای انجام فعالسازی حرارتی معمولا الکترود کربن شیشه ای در داخل یک لوله کوچک قرار میگیرد و با تابش حرارتی یک ترموکوپل در داخل محفظهای که فشار هوا درآن کمتر از6-10×2 تور میباشد، فعالسازی انجام می شود. در اثر فعالسازی حرارتی تنها سطح الکترود از آلودگیها پاک می شود ]12[.
1-2-2-3 فعالسازی لیزری
اعمال پالس لیزری با زمان کوتاه (ns10) و با شدت بالا می تواند سرعت انتقال ناهمگن الکترون را برای الکترود کربن شیشه ای افزایش دهد. اعمال پالسهای لیزری با زمان کوتاه به عنوان یک روش سریع وتکرارپذیر برای پاک کردن و فعالسازی سطح الکترود بکار میرود]13[.
کوتاهی درباره اهمیت بهینهسازی انرژی واحد 80، روش انجام شده در این مطالعه برای کاهش مصرف انرژی و اصلاح شبکه مبدلهای حرارتی این واحد بیان شده است.
در فصل دوم پیشینه روش تحلیل پینچ و تعاریف اولیه با اشاره به تاریخچه انجام مطالعات این تحلیل و به عنوان معیاری برای ارزیابی سیستمهای انرژی و تعیین نقاط بحرانی فرایند بیان شده است.
در فصل سوم روش تحلیل پینچ در انتگراسیون فرایندها، هدفگذاریها و اصول و معیارهای روش پینچ در اصلاح شبکه مبدلهای حرارتی و بهینهسازی فرایندها با بهره گرفتن از فناوری پینچ بیان شده است.
در فصل چهارم فرایند تولید نفت خام برای آشنایی بیشتر توضیح داده شده است. در این فصل پس از بیان تاریخچه توسعه این واحد پالایشگاهی، انواع فرایندهای و مشخصات خوراک و محصول این واحد بیان شده است .
در فصل پنجم نتایج تحلیلهای پینچ و سایر مطالعات انجام شده در واحد 80 آبادان آورده شده است و در ادامه فصل، اصلاح شبکه مبدلهای حرارتی واحد بیان شده است و در پایان فصل با انجام مطالعات اقتصادی، نتیجهگیری این پژوهش و پیشنهادهایی برای انجام کارها و مطالعات آتی بیان شده است.
2 فصل دوم
2-1 سابقه علمی
در سال 1970 که بحران انرژی آغاز شد مهندسان طراح و صاحبان صنایع بویژه شرکتهای صنایع فرایندهای شیمیایی به صرفهجویی در مصرف انرژی اندیشیدند که به ابداع روشهای گوناگون برای صرفهجویی در مصرف انرژی در طی این سالها منجر شد. همچنین به موازات آن دریافتند که باید از انرژیهایی که در یک فرایند تلف میشوند نیز دوباره استفاده کنند. (انرژی تلف شده انرژیی میباشد که در یک فرایند تولید میشود ولی دوباره به محیط دور ریخته میشود اگرچه هنوز میتوان از ان دوباره استفاده نمود).
کیفیت لازم برای انرژی مقدار نیست بلکه ارزش آن میباشد. این استراتژی که چگونه این انرژی بازیافت شود به دمای آن و مسائل اقتصادی بستگی دارد.در این خصوص شیوههای مختلفی برای استفاده مجدد از این انرژیهای هدر رفته در کارخانهها ارائه گردیده است که به بازیافت حرارتی معروف شده اند.این فعالیتها تا کنون به ابداع روشهای متعددی در طراحی منجر شدهاست.
اولین روش تجربی با بهره گرفتن از قواعد تجربی و طی چند مرحله تکاملی آرایش مناسبی برای شبکه بدست میآید.به عنوان نمونه توصیه میشود که در صورت امکان گرمترین جریان گرم موجود در فرایند انرژی خود را با جریان سردی که دمای نهایی آن از دیگر جریانهای سرد
بیشتر باشد مبادله نماید.این روش علیرغم سادگی روش قابل اطمینانی محسوب نمیشود ودر یک واحد شیمیایی پیچیده ما را به بهترین طرح ممکن رهنمون نخواهد ساخت.
دومین روش، روش ریاضی، که قدیمیترین روش محسوب میشود ابتدا تمام آرایش های ممکن برای شبکه تبادلگرهای حرارتی تعریف شده و به وسیلهی محاسبات ریاضی پیچیده و زمانگیر بازده واحد در هر حالت ارزیابی میشود و به تدریج گزینههای نامناسب حذف میگردند تا به شبکه منتخب نهایی برسیم. در این روش تعداد گزینهها و حالات مختلفی که برای هر مسئله میبایست در نظر گرفت بسیار زیاد خواهند بود و در مسئلهای نظیر شبکه تبادلگرهای حرارتی یک پالایشگاه به ارقامی بیش از 1018 لحاظ میرسد. بنابرین این مجموعه از ارزیابیها به یک کامپیوتر بزرگ و صرف زمان زیادی نیاز دارد به همین لحاظ در یک واحد صنعتی با ابعاد و پیچیدگیهای یک پالایشگاه استفاده از این روش با محدودیت مواجه خواهد شد [16].
در سال 1965، وا[1]، نظریه ادغام کلیه حالات مختلف شبکه مبدل ها را در یک شبکه کلی به نام ابر ساختار ارائه نمود. روش وی به عنوان ابزاری قوی برای طراحی شبکه مبدلهای حرارتی و ترکیب کلی فرایند با بهره گرفتن از مبدلهای برنامهریزی ریاضی مورد استفاده قرار گرفت[1].
سومین روش، روش ترمودینامیکی (پینچ)، پیچیدگی غیر ضروری روش دوم را ندارد و در عین حال قابل اعتماد نیز محسوب میشود و تا کنون به موفقیتهای بزرگی نائل آمدهاست. زیرا مهندسین طراح می توانند با بهره گرفتن از این روش قبل از طراحی نهایی حداقل گرمایش و سرمایش مورد نیاز فرایند کمترین سطح مورد نیاز برای تبادل حرارت و هزینه ها را محاسبه نموده و تلقی درستی از شبکه بهینه نهایی بدست آورد. در ضمن بدلیل سادگی و سهولت استفاده بر خلاف روش دوم کنترل طراحی در دست طراح میباشد و میتواند در مراحل مختلف تصمیم گیری و انتخاب نماید. این روش متکی بر تجربه و یا آزمون خطا نمیباشد و بوسیله ان طراحی شبکه آسانتر و صرف زمان کمتری انجام میگیرد.
در سال 1971، هامن[2] با بهره گرفتن از مفاهیم ترمودینامیکی، گامهای موثری را در زمینه تحلیل شبکه مبدلهای حرارتی برداشت که تحقیقات وی بعدها سرچشمه نکات ارزندهای در طراحی شبکه مبدلهای حرارتی گردید. کار وی به طور عمده بر تعیین حداقل انرژی مورد نیاز بر شبکه مبدلهای حرارتی با بهره گرفتن از روش تحلیل استوار بود که بعدها بوسیلهی فلاور[3] و لینهوف[4] کاملتر و به صورت الگوریتم ریاضی و مناسب برای هدفگذاری تبدیل شد[1].
فناوری پینچ نخستینبار در حدود سال 1980 برای صرفهجویی در مصرف و ذخیرهسازی انرژی مورد استفاده قرار گرفت. توسعه و تکمیل این روش به همت محققین مختلف در مراکز دانشگاهی نظیر دانشگاه منچستر و شرکتهایی چون لینهوف مارچ،ICI و یونیون کاربید انجام شده است[16].
نتایج بیان شده توسط هامن، سهم اندکی در ضمینه طراحی شبکهمبدلها بوسیله روش های ریاضی تا آن زمان داشت، اما بعدها برجستگی این روش در حل مسائل شبکهمبدل های حرارتی در صنعت، به موازات ناتوانی روشهای ریاضی در حل اینگونه مسائل،مشخص گردید. مهمترین تشخیص وی اهمیت مقدار ΔTmin در طراحی شبکهمبدلهای حرارتی است. به این معنا که دو هزینه غالب در طراحی شبکهمبدل های حرارتی (هزینه انرژی و قیمت مبدلهای حرارتی) با این متغیر ارتباط دارند. اما علیرغم نکات ارزنده گفته شده، او به تشخیص فواید مهم و کاربردی نقطه پینچ نائل نشد.
در سال 1978 یومدا[5] و همکاران به بعضی از خواص نقطه پینچ از جمله خصوصیات منحنی ترکیبی و همپوشانی دو منحنی ترکیبی گرم و سرد پی بردند[17].
در اواسط دهه هشتاد افرادی نظیر گاندسن[6] و نائس[7] با مورد توجه قرار دادن فناوری پینچ به عنوان ابزاری مناسب در طراحی شبکه تبادلگرهای حرارتی و تشخیص ساختار تبادلگرهای حرارتی سبب باز تاب مناسب این فناوری در آن زمان گردیده و این دیدگاه به این ترتیب مورد پذیرش قرار گرفت[18].
دمای پینج به عنوان یک معیار طراحی، به منظور رسیدن به بیشینه بازیافت انرژی در سال 1983 توسط لینهوف و هیند مارش معرفی گردید. آنها قوانین پینچ را که به عنوان قوانین طلایی پینچ نامیده شد در قالب سه قاعده بیان نمودند. این قوانین شامل عدم عبور انرژی از خط پینچ، عدم استفاده از جریان سرد خارجی در بالای خط پینچ و جریان گرم خارجی در پایین پینچ میباشند[19].
اما مبحث هدفگذاری مساحت را به طور جدی نخستین بار در سال 1984، لینهوف و تاون سند با ارائه فرمول یکنواخت بث[8] بیان نمودند. این فرمول توانایی ارائه مقدار مطلقی برای حداقل مساحت واقعی شبکه نداشت و همچنین دارای فرضیاتی بود که میتوانست نتایج آن را از آنچه در واقعیت وجود داشت دور سازد. یکی از مهمترین فرضهای آن، یکسان بودن ضرایب انتقال حرارت تمامی واحدهای حرارتی و یکسان بودن جنس مبدلهای حرارتی است[20].
مباحث متفاوت بودن ضریب انتقال حرارت در منحنی ترکیبی یا عدم انتقال حرارت عمودی در سال 1985، توسط احمد بیان گردیده و در سال 1990، از سوی کلبرگ و مراری تکمیل گردید. نتیجه این تحقیق آن بود که فرض یکسان بودن ضریب انتقال حرارت با آنچه در عمل وجود داشت تا 10% از واقعیت دور میباشد[21].
:[7]
خرابیهای یک موتور قفس سنجابی را می توان به دو دسته الكتریكی و مكانیكی تقسیم كرد.هر كدام از این خرابیها در اثر عوامل و تنش های متعددی ایجاد می گردند. این تنشها در حالت كلی بصورت حرارتی، مغناطیسی، دینامیكی، مكانیكی و یا محیطی می باشند كه در قسمت های مختلف ماشین مانند محور، بلبرینگ، سیم پیچی استاتور ، ورقه های هسته روتور واستاتور و قفسه روتور خرابی ایجاد میكنند. اكثر این خرابیها در اثر عدم بكارگیری ماشین مناسب در شرایط كاری مورد نظر، عدم هماهنگی بین طراح و كاربر و استفاده نامناسب از ماشین پدید میآید. در این قسمت سعی گردیده است ابتدا انواع تنشهای وارده بر ماشین، عوامل پدید آمدن و اثرات آنها بررسی گردد.
قبل از بررسی انواع تنشهای وارده بر ماشین القایی بایستی موارد زیر در نظر گرفته شود :
1- با مشخص كردن شرایط كار ماشین می توان تنشهای حرارتی، مكانیكی و دینامیكی را پیش بینی نمود و ماشین مناسب با آن شرایط را انتخاب كرد. به عنوان مثال ، سیكل كاری ماشین و نوع بار آن ، تعداد دفعات خاموش و روشن كردن و فاصله زمانی بین آنها ، از عواملی هستند كه تاثیر مستقیم در پدید آمدن تنشهای وارده بر ماشین خواهند داشت.
2- وضعیت شبكه تغذیه ماشین از لحاظ افت ولتاژ در حالت دائمی و شرایط راه اندازی و میزان هارمونیكهای شبكه هم در پدید آمدن نوع تنش و در نتیجه پدید آمدن خرابی در ماشین موثر خواهند بود.
الف ـ تنشهای گرمایی :این نوع از تنشها را می توان ناشی از عوامل زیر دانست:
◄ سیكل راه اندازی: افزایش حرارت در موتورهای القایی بیشتر هنگام راه اندازی و توقف ایجاد می شود. یک موتور در طول راه اندازی، پنج تا هشت برابر جریان نامی از شبكه جریان می كشد تا تحت شرایط بار كامل راه بیفتد. بنابراین اگر تعداد راه اندازی های یک موتور در پریود كوتاهی از زمان زیاد گردد دمای سیم پیچی به سرعت افزایش می یابد در حالی كه یک موتور القایی یک حد مجاز برای گرم شدن دارد و هرگاه این حد در نظر گرفته نشود آمادگی موتور برای بروز خطا افزایش می یابد. تنشهایی كه بر اثر توقف ناگهانی موتور بوجود می آیند به مراتب تاثیر گذارتر از بقیه تنشها هستند.
◄ اضافه بار گرمایی: بر اثر تغییرات ولتاژ و همچنین ولتاژهای نامتعادل دمای سیم پیچی افزایش می یابد.
بنابر یک قاعده تجربی بازای هر %2/1-3 ولتاژ فاز نامتعادل دمای سیم پیچی فاز با حداكثر جریان خود، 25% افزایش پیدا می كند .
◄ فرسودگی گرمایی: طبق قانون تجربی با ºc10 افزایش دمای سیم پیچی استاتور عمر عایقی آن نصف می شود. بنابراین اثر معمولی فرسودگی گرمایی ، آسیب پذیری سیستم عایقی است.
ب ـ تنشهای ناشی از كیفیت نامناسب محیط كار : عواملی كه باعث ایجاد این تنشهامی شود به صورت زیر است:
ج ـ تنشهای مكانیكی: عواملی كه باعث ایجاد این تنشها می شوند به صورت زیر می باشند:
◄ ضربات روتور: برخورد روتور به استاتور باعث می شود كه ورقه های استاتور عایق كلاف را از بین ببرد و اگر این تماس ادامه داشته باشد نتیجه این است كه كلاف در شیار استاتور خیلی زود زمین می شود و این به دلیل گرمای بیش از حد تولید شده در نقطه تماس می باشند.
◄ جابجایی كلاف: نیرویی كه بر كلافها وارد می شود ناشی از جریان سیم پیچی است كه این نیرو متناسب با مجذور جریان می باشد ( F∝ ). این نیرو هنگام راه اندازی ماكزیمم مقدار خودش را دارد و باعث ارتعاش كلافها با دو برابر فركانس شبكه و جابجایی آنها در هر دو جهت شعاعی و مماسی میگردد.
الف ـ تنشهای گرمایی: عواملی كه باعث ایجاد این نوع تنشها در روتور می شود به صورت زیر است:
◄ توزیع غیر یكنواخت حرارت: این مسئله اغلب هنگام راه اندازی موتور اتفاق می افتد اما عدم یكنواختی مواد روتور ناشی از مراحل ساخت نیز ممكن است این مورد رابه وجود آورد. راه اندازی های مداوم و اثر پوستی، احتمال تنشهای حرارتی در میله های روتور را زیادتر می كنند.
◄جرقه زدن روتور: در روتورهای ساخته شده عوامل زیادی باعث ایجاد جرقه در روتور میشوند كه برخی برای روتور ایجاد اشكال نمیكنند(جرقه زدن غیر مخرب) و برخی دیگر باعث بروز خطا می شوند(جرقه زدن مخرب ). جرقه زدنهای غیر مخرب در طول عملكرد نرمال[2] موتور و بیشتر در هنگام راه اندازی رخ میدهد .
◄ نقاط داغ و تلفات بیش از اندازه : عوامل متعددی ممكن است باعث ایجاد تلفات زیادتر و ایجاد نقاط داغ شوند. آلودگی ورقه های سازنده روتور یا وجود لكه بر روی آنها، اتصال غیر معمول میله های روتور به بدنه آن، فاصله متغیر بین میله ها و ورقة روتور و غیره می تواند در مرحله ساخت موتور به وجود آید. البته سازندگان موتور، آزمایشهای خاصی مانند اولتراسونیک را برای كاهش این اثرات بكار میبرند.
ب ـ تنشهای مغناطیسی: عواملی مختلفی باعث ایجاد این تنشها بر روی روتور می شوند همانند، عدم تقارن فاصله هوایی و شارپیوندی شیارها، كه این عوامل و اثرات آنها در زیر مورد بررسی قرار داده شده است:
◄ نویزهای الكترومغناطیسی : عدم تقارن فاصله هوایی، علاوه بر ایجاد یک حوزه مغناطیسی نامتقارن باعث ایجاد مخلوطی از هارمونیكها در جریان استاتور و به تبع آن در جریان روتور می گردد. اثرات متقابل هارمونیكهای جریان، باعث ایجاد نویز یا ارتعاش در موتور می شوند. این نیروها اغلب از نا همگونی فاصله هوایی بوجود میآیند
◄ كشش نا متعادل مغناطیسی: كشش مغناطیسی نامتعادل باعث خمیده شدن شفت روتور و برخورد به سیم پیچی استاتور می شود. در عمل روتورها به طور كامل در مركز فاصله هوایی قرار نمیگیرند. عواملی همانند، گریز از مركز[3]، وزن روتور، سائیدگی یا تاقانها و … همگی بر قرار گیری روتور دورتر از مركز اثر می گذارند.
◄ نیروهای الكترومغناطیسی: اثر شار پیوندی شیارها ناشی از عبور جریان از میله های روتور، سبب ایجاد نیروهای الكترودینامیكی می شوند. این نیروها با توان دوم جریان میله( ) متناسب و یكطرفه میباشند و جهت آنها به سمتی است كه میله را به صورت شعاعی از بالا به پائین جابجا می كند. اندازه این نیروهای شعاعی به هنگام راه اندازی بیشتر بوده و ممكن است به تدریج باعث خم شدن میله ها از نقطه اتصال آنها به رینگهای انتهایی گردند.
ج ـ تنشهای دینامیكی: این تنشها ارتباطی به طراحی روتور ندارند بلكه بیشتر به روند كار موتورهای القایی بستگی دارند.
برخی از این تنشها در ذیل توضیح داده می شود:
د ـ تنشهای مكانیكی: برخی از مهمترین خرابی های مكانیكی عبارتنداز:
هـ ـ تنشهای محیطی : همانند استاتور تنشهای محیطی مختلفی، می تواند بر روی روتور تاثیر گذار باشد همانند رطوبت، مواد شیمیایی، مواد خارجی و غیره
Abrasion -1
[2]- عملکرد نرمال تعریف می شود به صورت هر موتوری که در معرض افت ولتاژ، تغییر بار (نوسانات بار)، اغتشاشات سوئیچینگ و غیره قرارمی گیرد.
– Eccentricity3
Centrifugal Force-4
انفارکتوس میوکارد نرسیدن خون و اکسیژن کافی به یک منطقه از قلب است.ظهورنشانه هایMI
[1] ممکن است متنوع باشد و اکتروکاردیوگرافی نیز در حدود 50٪ از موارد غیرتشخیصی است،که خطری بالقوه برای تشخیص اشتباه است، از این رو ناگزیر،نیازمند سنجش بیومارکرهای قلبی هستیم. در این پژوهش سطح تروپونینI [2] سرم در تشخیص وقوع انفاركتوس قلبی با CK-MB[3] سرم، که اندازه گیری تروپونینI با روش Immunoenzymometric و با بهره گرفتن از كیت AccuBind Kit و CK-MB به روش DGKC(استاندارد انجمن بیو شیمیایی آلمان) و IFCC (فدراسیون بین المللی شیمی بالینی و طب آزمایشگاهی) با بهره گرفتن از کیت شرکت پارس آزمون با روش فتومتریک ، همچنین سیگاری و غیر سیگاری بودن به صورت پرسشنامه و میزان پارامترهای خونی مانند کلسترول، کاهش HDL و LDL [4]، و تریگلیسیرید که بیان کننده عارضه قلبی عروقی هستند، با بهره گرفتن از کیت شرکت پارس آزمون ، با روش فتومتریک و سپس تحلیل آماری نتایج با بهره گرفتن از نرم افزار SPSS نسخه 21 و آزمون t مستقل، در 40 بیمار MI و 40 بیمار قلبی فاقدMI بیمارستان قلب سیدالشهدا ارومیه بررسی و مقایسه شده است.
نتایج نشان داد که بین کلسترول، LDL و کاهش HDL بیماران دارای MI و بیماران فاقد MI تفاوت معنی داری ( 001/0P ) و بین تری گلیسیرید دو گروه تفاوت معنی داری( 05/0P ) وجود دارد. در ارتباط با مصرف سیگار بین بیماران MI با 5/37% و بیماران فاقد MI با 17% تفاوت چشمگیری وجود داشت.
نتایج حاصل از مقایسه cTnI وCK-MB بیماران دارای MI و فاقد MI نشان داد که بین cTnI بیماران فاقد MIو دارای MI و همچنین CK-MB بیماران فاقد MIو دارای MI تفاوت معنی داری در سطح ( 001/0P ) وجود دارد و cTnI و CK-MBبیماران دارای MI بیشتر از بیماران فاقد MI است. بنابراین در تشخیص و درمان به موقع انفارکتوس میوکارد استفاده از آنها ضروری می باشد .در این پژوهش cTnI وCK-MB را از لحاظ حساسیت و اختصاصیت با هم مقایسه کردیم که با توجه به نتایج حساسیت و اختصاصیت CTnI به ترتیب با 100% و 5/97% بیشتر از حساسیت و اختصاصیت CK-MB به ترتیب با 91% و 75% بود.
کلمات کلیدی : انفارکتوس میوکارد ECG – – تروپونین I(cTnI ) – CK-MB
1-1 بیماری ایسکمیک قلب
بیماری ایسکمیک قلب (IHD) به نبود اکسیژن ناشی از خون رسانی ناکافی اطلاق می گردد که این خود از عدم تعادل بین عرضه و تقاضای اکسیژن میوکارد ناشی می شود . شایع ترین عامل ایسکمی میوکارد بیماری آترواسکلروتیک شرائین کرونر اپیکارد است . وقتی تنگی ناشی از آترواسکلروز به حد کافی رسید ، خون رسانی از میوکارد که توسط شریان کرونر درگیر مشروب می شود کاهش می یابد .(1و3و12و43و44و45)
بیماری ایسکمیک قلب بیش از هر بیماری دیگر در کشورهای توسعه یافته موجب مرگ و ناتوانی شده و هزینه های اقتصادی تحمیل می نماید. IHD شایع ترین ، جدی ترین، مزمن ترین و خطرناکترین بیماری در ایالات متحده است و در این کشور 13 میلیون نفر دچار IHD هستند، بیش از 6میلیون نفر به آنژین صدری مبتلا می باشند و بیش از7 میلیون نفر یک انفارکتوس میوکارد داشته اند. رژیم پر چربی و انرژی ، مصرف سیگار و شیوه زندگی کم تحرک با بروز IHD همراه می باشند . در ایالات متحده و اروپای غربی ، این بیماری بیشتر در بین فقرا در حال افزایش است تا افراد ثروتمند (که از شیوه سالم زندگی بیشتر پیروی می کنند) ضمن اینکه پیشگیری اولیه باعث به تعویق افتادن بیماری در تمام گروه های اقتصادی اجماعی شده است. علیرغم این آمارها ، اطلاعات اپیدمیولوژی نشان می دهند که میزان مرگ و میر IHD کاهش یافته است که نیمی از آن ناشی از درمان بیماری ایسکیمیک قلب و نیمی ناشی از پیشگیری از طریق اصلاح عوامل خطر ساز IHD می باشد. (1و43و45و47).
1-2 سندرم های حاد کرونری
عبارت” سندرم حاد کرونری ” سندرم های بالینی آنژین ناپایدار، انفارکتوس بدون صعود قطعه ST(NSTEMI)[7] ، وانفارکتوس با صعود قطعه ST (STEMI)[8] را شامل می گردد. معمولاً بیماران مبتلا به آنژین ناپایدار و NSTEMI را نمی توان از شرح حال ، معاینه فیزیکی و یافته های ECG از یکدیگر افتراق داد.تنها روش افتراق این دو حالت از یکدیگر بررسی سطح آنزیم های قلبی در سرم می باشد .(1و43و3و51و55)
1-3 سکته قلبی یا انفارکتوس میوکارد(MI)
انفارکتوس حاد میوکارد[10](AMI) یکی از شایع ترین تشخیص ها در بیماران بستری در کشور های صنعتی است. میزان مرگ و میر زود هنگام (30روزه) ناشی از AMI تقریبأ 30% است و بیش ازنیمی از این موارد مرگ ، پیش از رسیدن فرد به بیمارستان اتفاق می افتد. اگرچه میزان مرگ ومیر بعد از پذیرش در بیمارستان به حدود 30 درصد در طی دو دهه ی اخیر کاهش یافته است، از هر25 بیماری که از بیمارستان ترخیص می شوند ،یک نفر در طی سال اول بعد از انفارکتوس جان می سپارد. میزان بقاء خصوصاً در بیماران مسن(بیش از 75سال) کاهش چشمگیری دارد.(1و58)
نرسیدن خون و اکسیژن کافی به یک منطقه از قلب را سکته قلبی می گویند. بر اثر این عمل آن منطقه از قلب دچار صدمه دائمی یا مرگ سلولی می شود .در اصطلاح پزشکی MI و یا انفارکتوس میوکارد عبارت از تخریب دائمی و غیرقابل برگشت و نکروز قسمتی از عضله قلب(میوکارد) است که به علت از بین رفتن جریان خون و وقوع یک ایسکمی[11] شدید در آن قسمت از قلب روی میدهد. این توقف گردش خون میتواند بطور ناگهانی بدون هیچ علائم قبلی نمایان گردد یا پس از تعدادی از حملات آنژینی(درد قفسه سینه[12] ) نمود یابد.(12و57و60و64و65)
بلافاصله بعداز انسداد حاد کرونر ، جریان خون در عروقی که فراتر از ناحیه انسداد قرار دارند ، قطع می شود و فقط مقدار کمی خون در
عروق جانبی آن ناحیه جریان می یابد. ناحیه ای که جریان خون آن قطع شده یا به حدی کم است که ادامه عملکرد عضله قلبی را تضمین نمی کند، ” ناحیه مبتلا به انفارکت ” و کل این فرایند انفارکتوس میوکارد نامیده می شود.(5)
مدت کوتاهی پس از آغاز انفارکتوس ، مقدار کمی خون از عروق جانبی به ناحیه مبتلا به ایسکمی وارد می شود و همزمان ، اتساع پیش رونده عروق موضعی ، ناحیه را با خون راکد پر می کند. همچنین سلولهای عضله ، آخرین مولکولهای اکسیژن خون را مصرف می کنند و هموگلوبین با از دست دادن تمام اکسیژن خود ، به رنگ آبی تیره در می آید . لذا ناحیه مبتلا به ایسکمی به رنگ آبی تیره در می آید و عروق خونی ناحیه ، علیرغم قطع جریان خون ، محتقن به نظر می رسند. در مراحل بعدی ، تراوایی دیواره عروق افزایش می یابد ودر پی نشت مایع ، ادم بافتی روی می دهد.سلولهای عضله قلبی به دلیل کاهش متابولیسم ، متورم می شوند .سلولهای عضله قلبی در عرض چند ساعت پس از قطع خونرسانی می میرند. (5)
انفارکتوس زیر اندو کارد : عضله زیر اندوکارد ممکن است به انفارکتوس دچار شود اما هیچ نشانه ای از انفارکتوس در لایه خارجی میوکارد مشاهده نگردد . علت آن است که حتی در شرایط طبیعی ، عضله زیر اندو کارد به سختی خون مورد نیاز خود را دریافت می کند ، زیرا در مرحله سیستول ، عروق خونی در ناحیه زیر اندو کارد ، فشار زیادی را تحمل می کنند . بنابراین هر عاملی که جریان خون یک بخش از قلب را مختل کند ، ابتدا به ناحیه زیر اندوکارد آسیب می زند و سپس آسیب به طرف اپیکارد گسترش می یابد .(5)
عضله قلبی برای ادامه حیات , به 3/1 میلی لیتر اکسیژن به ازای هر صد گرم بافت عضله در هر دقیقه نیاز دارند . می دانیم که به هر صد گرم عضله بطن چپ سالم در وضعیت استراحت ، در حدود 8 میلی لیتر اکسیژن در هر دقیقه وارد می شود . لذا حتی اگر 15 تا 30 درصد از جریان خون طبیعی کرونر بر قرار باشد ، عضله نمی میرد . با این حال در مرکز یک انفارکتوس بزرگ که جریان خون جانبی نزدیک به صفر است عضله می میرد .
هنگامی که خونرسانی به ناحیه ای قطع می شود ،سلولها در عرض 15 دقیقه در مقابل ایسکمی دوام می آورند ؛اما از آنجایی که سلولهای میوکارد متابولیسم بالایی دارند ، علایم MI در عرض چند ثانیه (حدود 10-8 ثانیه )پس از کاهش جریان خون ناحیه بروز می کند.(12و65)
انفارکتوس ممکن است تمام ضخامت دیواره ی بطن را فراگیرد که به آن ترانس مورال[13] می گوییم و یا ممکن است محدود به ناحیه ی ساب آندو کاردیال باشد که به آن(انفارکتوس میوکارد بدون موجQ) wave MI None Q نیز می گویند و معمولاً در مواردی اتفاق می افتد که کرونر ناگهان به شدت بسته می شود ولی هنوز راه باریکی جهت عبور خون باقی است و یا در مواردی که رگ قبلاً شدیداً تنگ بوده و حالا ناگهان مسدود می شود و توجیه آن این است که در مدتی که رگ شدیداً تنگ بوده عروق جانبی رشد کرده اند ، مانع از MIترانس مورال می شود.(3و4).
6تا12 ساعت پس از انسداد کرونر اولین تغییرات در میوکارد ظاهر می شود که بیشتر میکروسکوپیک می باشد و به صورت مواج شدن میو فیبریل هاست.
8 تا12 ساعت بعد از MI میوکارد رنگ پریده و ملتهب می شود.
18تا36 ساعت بعد از MI میوکارد به صورت قرمز کم رنگ در می آید که به خاطر به دام افتادن گلبول های قرمز می باشد. این تغییرات تا 48 ساعت نیز ممکن است باقی باشد. بعداز 48 ساعت به واسطه عملکرد نوتروفیل به صورت زرد و خاکستری در می آید .
8 تا 10 روز بعداز MI منطقه انفارکته نازک می شود و بافت های نکروز توسط منونوکلئوزها از محیط برداشته می شوند و سپس به تدریج تشکیل بافت فیبروزه آغاز می گردد که ممکن است تا 2 الی 3 ماه طول بکشد. (هفته دوم از نظرپارگی قلب هفته خطرناکی است) چون بافت نکروز تا حدودی از منطقه برداشته شده وبافت فیبروزه هنوز تشکیل نشده از طرف دیگر بیمار نیز فکر می کند خوب شده و اصرار به ترخیص و برگشت به فعالیت های عادی اش را دارد.(4) در انفارکتوس میوکارد سه ناحیه مشخص وجود دارد . مرکز ناحیه که خونرسانی آن کاملاً قطع شده است ، به ناحیه انفارکته یا نکروز معروف است . اطراف این ناحیه که با کاهش خونرسانی و هیپوکسمی مواجه است ، به ناحیه پنومبرا[14] یا هیپوکسیک معروف است . بیرونی ترین قسمت ناحیه آسیب دیده ، به ناحیه ایسکمیک معروف است. با مداخلات درمانی به موقع ، امکان زنده نگه داشتن نواحی هیپوکسیک و ایسکمیک وجود دارد.
شکل 1-1 : سه ناحیه مشخص انفارکتوس میوکارد و همزمان تغییرات الکتروکاردیوگافی مربوط به هر مرحله از تغییرات بافت میوکارد. ایسکمی به علت تغییر رپولاریزاسیون ، باعث معکوس شدن موج T می شود . آسیب عضله قلب باعث بالا رفتن قطعه ST ، و امواج T بلند و معکوس می گردد . بعداً ، بعلت عدم وجود جریان دپولاریزاسیون از بافت نکروزه و جریانهای مخالف از قسمتهای دیگر قلب ، موج Q بزرگ ایجاد می شود . (96) |
در انفارکتوس ترنس مورال در ناحیه نکروزه ، در عرض چند هفته ، بافت اسکار و همبند تشکیل می شود . این ناحیه در هنگام سیستول منقبض نمی شود و اگر وسعت آن زیاد باشد ، در هنگام انقباض بطن و افزایش فشار در داخل بطن به بیرون برآمده می شود که به آنوریسم بطنی معروف است(شکل1-1). (12و96) .
انفارکتوس میوکارد ، مراحل موقت زیر را پشت سر می گذارد :
1) حاد (چند ساعت نخست تا روز هفتم) 2) التیام (روز هفتم تا بیست وهشتم) 3) نقاهت (روز بیست و نهم به بعد) .
در هنگام ارزیابی نتایج تست های آزمایشگاهی ، باید این مراحل سه گانه مد نظر باشند . تست های آزمایشگاهی با ارزش جهت تشخیص انفارکتوس میوکارد به چهار گروه تقسیم می شوند:
1-4- بیماران مبتلا به ایسکمیک قلب در دو گروه بزرگ قرار می گیرند :
1-5 پاتوفیزیولوژی STEMI ، (UA) و (NSTEMI)
STEMI عمومأ موقعی روی می دهد که میزان جریان خون کرونر به دنبال انسداد ترومبوتیک شریان کرونری که قبلا به وسیله آترواسکلروز تنگ شده است ، ناگهان کاهش می یابد و به انسداد کامل شریان کرونر می انجامد.
UA/NSTEMI ممکن است به علت کاهش در اکسیژن رسانی و یا افزایش نیاز میوکارد به اکسیژن (مثلأ در تاکیکاردی یا آنمی شدید) ایجاد شود که در زمینه انسداد کرونر روی داده است. چهار فرایند پاتوفیزیولوژیک که ممکن است در ایجاد UA دخالت داشته باشند شناسایی شده اند :
1 – پارگی یا خورده شدن پلاک به همراه ایجاد لخته غیر انسدادی که تصور می شود شایعترین علت می باشد ؛ NSTEMI ممکن است درنتیجه آمبولی و تجمعات پلاکتی و یا تکه های کنده شده از پلاک آترواسکلروتیک نیز ایجاد شود.
2-انسداد دینامیک (مانند اسپاسم کرونر). 3- انسداد مکانیکی پیشرونده (مانند آترواسکلروز سریعأ پیشرونده کرونر یا تنگی مجدد به دنبال مداخله کرونروی از طریق پوست). 4- UA ثانویه مربوط به افزایش نیاز میوکارد به اکسیژن و یا کاهش اکسیژن رسانی(مانند آنمی)(1و56و59)
1-6 تظاهرات بالینیSTEMI و UA/NSTEMI
شاه علامت بالینی UA/NSTEMI که در STEMI نیز وجود دارند درد قفسه ی سینه است که به طور تیپیک در ناحیه ی زیر جناغ یا گاهی در اپیگاستر[19] (ناحیه فوقانی شکم ) حس می شود و به طور شایع به گردن ،شانه چپ و بازوی چپ انتشار می یابد. این ناراحتی معمولأ به قدری شدید است که دردناک در نظر گرفته می شود.(48و49و51و57)
اکثر بیماران STEMI نگران و ناآرام هستند و به طور ناموفقی سعی می کنند باجابه جا شدن در تخت و به خود پیچیدن به از بین رفتن درد کمک کنند . رنگ پریدگی همراه با عرق ریزش و سرد شدن به طور شایعی رخ می دهد . مجموعه ای از درد زیر جناغ که بیش از 30 دقیقه طول کشیده باشد، همراه با تعریق ،قویاً STEMI را مطرح می سازد . (61و63)
بشر از هزاران سال پیش از میلاد مسیح با اهداف گوناگونی از الیاف نساجی استفاده میکند. گرچه تاریخچه مستندی از تکامل صنعت نساجی در دست نیست اما در ابتدا الیاف نساجی برای حمل مواد غذایی و در تهیه حصیر به عنوان سرپناه بهکار می رفتند. در مراحل بعدی تکامل، الیاف نساجی به عنوان البسه مورد استفاده قرارگرفتند و امروزه در زمینههای گوناگونی چون پوشاک، وسایل خانه و صنایع کاربرد دارند[1].
به دلیل افزایش جمعیت و ارتقاء سطح استانداردهای زندگی مصرف الیاف[1] در چند دهه اخیر به شدت افزایش یافته است. به طوری که در سال 2012 حجم تولیدات نساجی با 9/1 % افزایش به 5/88 میلیون تن رسید.گرچه ممکن است این الیاف پس از پایان طول عمر به نحوی دوباره در غالب محصولی دیگر مورد استفاده قرار گیرند، اما در نهایت دیر یا زود به عنوان زباله دور ریخته میشوند و الیاف جدید جایگزین الیاف فرسوده و کهنه می شوند]2و3[.
تولید بیشتر به معنی مواد پسماند بیشتر، و همچنین اثرات زیستمحیطی مخربتر است. امروزه مواد پسماند نساجی[2] عمدتا توسط: استفاده مجدد(کالاهای نساجی دست دوم)[3]، استفاده مجدد در تولیدات(به عنوان ماده پرکنندهو استفاده در سایر بخشهای صنعت نساجی)[4]، بازیافت[5](پلی استر)، تهیه کود کمپوست، دفن و یا سوزاندن [6]مدیریت میشوند. برخی از کارشناسان روش سوزاندن را برای تبدیل مواد پسماند به انرژی پیشنهاد می کنند، اما این روش با آزادسازی مواد سمی چون دیوکسینها[7]، فلزات سنگین، اسید، گاز و ذرات گرد و غبار همراه است که همگی برای سلامت انسان و محیط زیست مضر هستند. همچنین سوزاندن مواد پسماند نیاز به تجهیزات پیشرفته دارد و حذف کامل مواد خطرناک نیز غیر ممکن است. دفن مواد پسماند به سبب ایجاد گازهای سمی آلوده کننده محیط زیست و هزینه بالایی که دربر دارد، آخرین و ناکارآمدترین راهکار جهت دفع مواد پسماند نساجی است[2]. بیش از 90% الیاف نساجی قابل بازیافت اند که یکی از راهکارهای دوستدار محیط زیست جهت دفع مواد پسماند نساجی است. اما فقدان روش مقرون به صرفه بازیافت در مقیاس وسیع و همچنین تنوع زیاد الیاف و رنگ های به کار رفته در پارچه از جمله محدودیت های این روش محسوب می شوند[3].
به دلیل نگرانی های اقتصادی و زیست محیطی در چند دهه اخیر تحقیقات بسیاری جهت یافتن منابع انرژی تجدید پذیر قابل جایگزینی با سوخت های فسیلی صورت گرفته است. بیوگاز یکی از سوخت های زیستی است که از طریق هضم بیهوازی[8] بسترهای آلی بدست میآید و میتواند در تولید حرارت و نیرو جایگزین مناسبی برای سوختهای فسیلی باشد یا حتی به عنوان سوخت وسایط نقلیه گازسوز مورد استفاده قرار گیرد. این سوخت بیولوژیک مزایای فراوانی از جمله قابلیت تجدیدپذیری، کاهش آزادسازی گازهای گلخانهای[9] و تخفیف گرم شدن زمین در اثراین گازها، کاهش وابستگی به سوختهای فسیلی، انعطافپذیری در مصرف نهایی و استفاده از مواد پسماند به عنوان ماده اولیه بههمراه دارد[4].
حدود 6/31 % از الیاف تولیدی نساجی را الیاف پنبه ای[10] تشکیل می دهند. الیاف جامدهای غنی از سلولز هستند که می توانند به عنوان خوراک در فرایند هضم بیهوازی مورد استفاده قرار گیرند. با این وجود، تولید مناسب بیوگاز از مواد پسماند نساجی نیازمند توسعه فرایند مناسب میباشد[5].
اگر مواد پسماند پنبهای به طور مستقیم در فرایند بیوگاز به عنوان خوراک استفاده شود به بازده تولید متان مطلوبی بدست نمیآید. بنابراین جهت افزایش بازده لازم است که فرایندهای مقدماتی پیشفرآوری[11] روی مواد پسماند صورت گیرد[6].
به کمک انجام عملیات پیشفرآوری مناسب بر روی مواد پسماند نساجی میتوان به اهدافی چون تشکیل ساختاری سلولزی با بلورینگی کمتر، کاهش ناخالصیهای موجود در کالا و همچنین افزایش سطح در دسترس سوبسترا دست یافت[7].
در این تحقیق پیشفرآوری کربنات سدیم جهت بهبود تولید بیوگاز از پارچه پنبه-پلیاستر به عنوان هدف اصلی مورد نظر قرارگرفت و شرایط بهینه تولید بیوگاز حاصل گردید. نمونه پنبهای جهت مقایسه تحت شرایط دمایی و غلظتی مشابه پارچه پنبه-پلیاستر پیشفراوری شد. بررسی میزان بهبود تولید اتانول و افزایش سطح در دسترس آنزیمی نمونههای پنبه و پارچه در اثر اعمال پیشفرآوری از اهداف فرعی پروژه بود. بررسی میزان جداسازی جزء پنبه از پلیاستر در عملیات پیشفرآوری در دمای 150درجه سانتیگراد و غلظت 5/0 مولار نیز از اهداف فرعی پروژه بود. نوآوری این پروژه اثر محلول قلیایی بر کاهش بلورینگی و ناخالصی جزء پنبهای و همچنین هیدرولیز همزمان بیش از 97 درصد بخش پلیاستری در دمای 150 درجه است. مراحل انجام کار در شکل 1‑1 ملاحظه میشود.
پنبه |
پارچه |
پیشفرآوری |
تولید بیوگاز |
هیدرولیز آنزیمی |
تولید اتانول |
پنبه فرآوری شده (ویسکوز) |
)FTIR ,NREL SEM,Swelling ( |
آنالیز مواد توسط |
شکل 1‑1-مراحل انجام این پروژه
باتوجه به اهمیت افزایش زبالههای نساجی در سالهای اخیر، فعالیتهای مقدماتی در این راستا انجام شده است. جیحانیپور و همكارانش[6]، از پیشفرآوری با حلال نرمال متیل مورفولین نرمال اکسید[12] برای بهبود تولید بیوگاز از پارچههای زائد استفاده کردند. تاثیر پیشفرآوری با این حلال در 3 غلظت متفاوت شامل انحلال کامل (غلظت 85 % نرمال متیل مورفولین نرمال اکسید)، بالونی شدن[13](غلظت 79 % نرمال متیل مورفولین نرمال اکسید) و تورم[14](غلظت 73 % نرمال متیل مورفولین نرمال اکسید) مورد مطالعه قرار گرفت. در نهایت شرایط بهینه در غلظت 85 % نرمال متیل مورفولین نرمال اکسید و دمای 120 درجه سانتیگراد ،تحت فشار اتمسفریک و به مدت 5/2 ساعت حاصل شدکه تحت این شرایط بهینه بازده متان نمونه پنبه از 02/0 % نمونه پیشفرآوری نشده به 30 % رسید.
جیحانیپور و همكارانش[8]، اثر فرایند دو مرحلهای استفاده از راکتور CSTR[15] به همراه راکتور با بستر پوشانده شده از لجن بیهوازی(UASB) [16]را در تولید بیوگاز از الیاف نساجی زائد تحت شرایط بسته و نیمه مداوم مورد بررسی قرار دادند. استفاده از فرایند دو مرحلهای تولید متان را تا 80% بازده تئوری افزایش داد و فاز تاخیر[17]را از 15 روز به 4 روز کاهش داد.
جیحانیپور و همكارانش[9]، تولید اتانول از پنبه و پارچهی جین[18] استفادهشده را مورد بررسی قرار دادند. در پارچه پیشفرآوری نشده پس از 24 ساعت هیدرولیز و یک روز تخمیر[19] بازده 25-26 % برابر بازده تئوری بود. پیشفرآوری با اسید فسفریک[20] غلیظ تولید اتانول را تا 66% بازده تئوری افزایش داد. هیدرولیز قلیایی با سود 0-20 % در دماهای صفر،23 و100 درجه سانتی گراد انجام گرفت. در نهایت تحت شرایط بهینه (NaOH 12%، صفر درجه سانتیگراد و زمان 3 ساعت) پس از 24 ساعت هیدرولیز آنزیمی به 1/85 % بازده تئوری و پس از 4 روز هیدرولیز به 1/99% بازده تئوری دست یافتند.
غلامزاد و همکاران[10]، به منظور افزایش بازده تولید اتانول پیشفرآوری با حلالهای قلیایی، پیشفرآوری با فسفریک اسید 85 % و پیشفرآوری با نرمال متیل مورفولین نرمال اکسید را مورد بررسی قرار دادند. نتایج حاصله نشان داد که، بازده هیدرولیز آنزیمی نمونه های پیش فرآوری شده با حلالهای قلیایی بیش از 80 % و با حلالهای فسفریک اسید و نرمال متیل مورفولین نرمال اکسید به ترتیب بیش از 99 و 94 % بود.در حالی که پارچه پیشفرآوری نشده این مقدار برابر 3/46 % بود.
شین و همکاران[11]، جهت افزایش میزان تولید قند آنزیمی و جداسازی پلیاستر از الیاف نساجی زائد پنبهای، از پیشفرآوری با حلال فسفریک اسید استفاده كردند. بررسی تاثیر شرایط پیشفرآوری چون غلظت فسفریک اسید، دما، زمان و نسبت سوبسترا به فسفریک اسید نشان داد که بازیافت کامل پلی استر با افزایش غلظت، دما، زمان و با کاهش نسبت جامد به حلال افزایش مییابد. میزان تولید قند و بازیافت 100% پلیاستر در شرایط بهینه (غلظت فسفریک اسید 85%، دمای 50، به مدت 7 ساعت و نسبت 1 به 15 )بدست آمد.
مواد لیگنوسلولزی زائد ناشی از صنایع کشاورزی ( کاه گندم، تفاله ی نیشکر، علوفه ی ذرت )، جنگلداری ( چوب های سخت و نرم ) و شهرنشینی منابع ارزانقیمت، دردسترس و منابع تجدید پذیر انرژی هستند که میتوانند در تهیه محصولات بیولوژیکی مورد استفاده قرار گیرند. این مواد عمدتاً از سلولز، لیگنین و همی سلولز تشکیل شده اند. سلولز و همیسلولز دارای ساختار کربوهیدراتی میباشند و میتوانند به راحتی به محصولات بیولوژیکی تبدیل شوند. اما لیگنین یک پلیمر آروماتیکی با ساختار پیچیده میباشد که بصورت یک غشا اطراف ناحیهی کربوهیدراتی را احاطه کرده و مانع دسترسی به ناحیهی کربوهیدراتی است. لذا عموما یک مرحله ابتدایی پیشفرآوری پیش از استفاده از این مواد در مرحله تبدیل بیولوژیکی جهت حذف لیگنین و کاهش کریستالینیتی سلولز مورد نیاز است. پیشفرآوری مورد استفاده در این پژوهش تاکنون برای مواد سلولزی استفاده نشدهاست لذا در ادامه به معدود کارهای انجام شده در این زمینه روی مواد لیگنوسلولزی اشاره داریم[12] .
یانگ و همکاران[13]، از فرآوری کاه برنج [21]با کربنات سدیم و سولفات سدیم جهت بهبود بازده تولید اتانول استفاده کردند. نتایج تاثیر مثبت هردو نمک معدنی کربنات سدیم و سولفات سدیم را در زیست تخریبپذیری کاه برنج تایید کرد. آنها بازده تولید قند را هنگام استفاده از کربنات سدیم با نسبت وزنی 1 به صفر (نسبت به سولفات سدیم) در دمای 140 درجه سانتیگراد با نسبت وزنی سوبسترا به محلول 12 درصد و با بهره گرفتن از مقدار 20 FPU بهازای هر گرم سلولز، به ترتیب برای قند کل، گلوکان[22] و زایلان[23]، 1/67، 4/74 و 7/53 درصد و همچنین درصد تبدیل پلیساکاریدها را 9/88 درصد گزارش کردند.
صالحی و همکاران[14]، از فرآوری کاه برنج با کربنات سدیم در فشار بالا جهت بهبود بازده تولید اتانول استفاده کردند. در نهایت شرایط بهینه فرآوری در غلظت 5/0 مولار کربنات سدیم و دمای 180 درجه سانتی گراد به مدت 120 دقیقه حاصل شد. تولید اتانول با بهره گرفتن از فرآوری مذکور از 2/90 گرم بر لیتر به 4/351 گرم بر لیتر رسید.
خالقیان[15]، از فرآوری با کربنات سدیم جهت جداسازی سیلیس از کاه برنج به منظور بهبود تولید اتانول از آن استفاده کرد. نتایج نشان داد که با افزایش دما بازده تولید اتانول افزایش داشت. شرایط بهینه در غلظت 5/0 مولار کربنات سدیم و دمای 100 درجه سانتیگراد به مدت 3 ساعت حاصل شد.تحت شرایط بهینه عمل پیشفرآوری بازده تولید اتانول را از 8/39 % تا 2/83 % افزایش نشانداد.
[1] Fiber
[2] Waste textiles
[3] Reuse (second hand clothing)
[4] Remanufacture (filling materials and other uses of textile pieces)
[5] Recycling
[6] Landfilling and incineration
[7] Dioxins
[8] Anaerobic digestion
[9] Greenhouse gases
[10] Cotton fiber
[11] Pretreatment
[12] N-Methymorpholine N-oxide (نرمال متیل مورفولین نرمال اکسید)
[13] Ballooning
[14] Swelling
[15] Continuously stirred tank reactor
[16] Upflow anaerobic sludge blanket bed
[17] Lag phase
[18] Jean
[19] Fermentation
[20] Phosphoric acid
[21] Rice straw
[22] Glucan
[23] Xylan